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INTRODUCTION 

Coyotes (Canis latrans), in the absence of larger predators that in many cases 

have been extirpated from landscapes (e.g., wolves; Canis lupus), have become the de-

facto apex predator in the last several decades in most major metropolitan areas in North 

America (Gompper 2002, Gehrt 2004). Prior to wide-spread settlement of western North 

America (circa 1800), the coyote’s primary range was the arid grassland and deserts of 

the Great Plains region (Moore and Parker 1992, Young and Jackson 1951, Seton 1929). 

By the close of the 20
th

 century, however, the coyote had expanded its range to include 

nearly all of North and Central America (Parker 1995).  

Coyotes were an original component of the native fauna of Michigan, though 

historically they occupied only the prairies and oak savannas of the southern Lower 

Peninsula (Baker 1983; Dice 1927). Coyote northward range expansion was initially 

limited by interference competition and direct killing of coyotes by wolves, although 

temporal resource partitioning may have allowed coyotes to co-exist with wolves (Berger 

and Gese 2007). Coyotes inhabiting southeastern Michigan may have been briefly 

extirpated, or at least reduced to low numbers by humans in the early part of the 19
th

 

century as industry and commerce grew in the region. By about 1850, coyotes from the 

Great Plains had extended into Michigan to re-occupy their historic range (Gier 1975). 

Extirpation of wolves from the Lower Peninsula (circa 1910; Beyer et al. 2009) allowed 

coyotes to utilize areas where they were previously outcompeted (Ballard et al. 2003). 

Coyote range expansion across Michigan was further facilitated by large-scale human 

disturbances (e.g., logging, farming) that created edge and seral stage vegetation that 

promoted the availability of communities of prey species across the landscape (Patterson 
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and Brown 1991). Range expansion and recent population growth (circa 1980; Frawley 

2008) of coyotes in Michigan has led to their increased presence in urban environments 

including the greater Detroit area in southeastern Michigan. The recurrence of coyotes in 

Michigan and advent in northeastern North America has become a major wildlife 

management challenge, with extremely negative public perceptions of coyotes 

predominating in urban areas (Gompper 2002; Gehrt 2004).   

Because coyotes have the ability to structure ecological communities through 

direct and indirect top-down effects, they may play a keystone role in maintaining 

biodiversity and ecosystem function (Crooks and Soulé 1999, Bekoff and Geese 2003). 

For example, predation of rodents by coyotes has been shown to promote overall 

biodiversity of rodents (Henke and Bryant 1999). Increases in recruitment of ground-

nesting birds have also been attributed to coyote exclusion of meso-predators (Mezquida 

et al. 2006, Rogers and Caro 1998, Sovada et al. 1995; but see Gehrt and Clark 2003). In 

urban areas, coyotes may act as important bio-control agents limiting the population 

growth of overabundant nuisance wildlife such as Canada geese (Branta canadensis) 

(Brown 2007) and white-tailed deer (Odocoileus virginianus (Gehrt and Riley 2010; 

Piccolo et al. 2010). Despite coyotes’ potential ecological and economic benefits, 

however, and regardless of the infrequency of adverse interactions with humans, coyote 

management will inevitably focus on human-coyote conflicts (Gompper 2002, Way et al. 

2004, Gehrt and Riley 2010) as it has historically. 

Although numerous studies of coyotes have been carried out in metropolitan areas 

in the western United States (e.g., Atkinson and Shackleton 1991, Quinn 1997, Grinder 

and Krausman 2001, McClennan et al. 2001, Tigas et al. 2002, Riley et al. 2003) only a 
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handful have been conducted in the East and Midwest (see Way et al. 2004, Atwood et al. 

2004, Gehrt et al. 2009).  How coyotes respond to urbanization in eastern and 

Midwestern cities is likely to be very different from western environments because the 

climatic conditions and plant and animal communities are dramatically different. Our 

poor understanding of the ecology of coyotes in eastern and Midwestern metropolitan 

areas makes it difficult for wildlife managers to make proactive decisions to mitigate 

coyote-human conflicts and for urban residents to form an educated opinion about the 

true risk associated with coyotes. Clearly, more knowledge of how coyotes have 

successfully adapted to urban environments in the eastern and Midwestern U.S. is needed 

to inform discussions of options and strategies to mitigate negative human-coyote 

interactions in urban areas.  

As an attempt to gain a better understanding of how the coyote, a medium-sized 

carnivore, has adapted to and succeeded in the greater Detroit area of southeastern 

Michigan while remaining relatively unnoticed by humans, I gathered base-line 

ecological data on coyotes at different locations throughout the area. Specifically, I 

completed the following series of studies to: (1) determine how coyotes distribute 

themselves and use habitat across the urban landscape, (2) quantify coyote diets and 

foraging patterns, and (3) evaluate how coyotes use space and navigate the urban matrix.   

In Chapter 1, I used a field survey for evidence of coyotes to determine how 

coyotes are distributed across the landscape, and a raster geographic information system 

(GIS) land cover layer of southeastern Michigan to quantify coyote occupancy of 

different land cover. Examining the distribution and habitat use of coyotes can be useful 

in establishing where interactions between coyotes and humans are likely to occur. 
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Knowing the whereabouts of coyotes living in close proximity to humans is important to 

avoiding and mitigating negative human-coyote interactions.   

 Chapter 2 was based on field studies conducted to determine if both coyote diets 

and prey availability varied between urban and suburban areas (urbanization level) or 

among important coyote biological periods and how this might affect coyote foraging 

patterns. Quantifying variation in the diet of coyotes and availability of prey are 

important for identifying periodically important prey and differences between 

urbanization levels in prey value. Examining the foraging patterns of coyotes is important 

to understanding their role as a top predator in urban environments and their potential to 

limit nuisance urban wildlife.  

In Chapter 3, I incorporated field monitoring of radio-collared coyotes to examine 

use of space by coyotes. Using collected radio-telemetry data, I estimated the size and 

position across the landscape of coyote home ranges and core-use areas. I then used a 

raster geographic information system (GIS) land cover of southeastern Michigan to 

explore what effect urban land cover, and both fragmentation and connectivity of natural 

land cover, had on the home range and core-use areas of coyotes. Mapping the position of 

coyote core-use areas across the landscape can be used to identify habitats where 

important resources or aggregations of prey exist. Because of the coyotes’ strong 

dependence on patches of natural habitat, it is important to understand how urban land 

cover and the contrasting landscape metrics of fragmentation and connectivity of natural 

land cover affect coyote space use patterns.  

Collectively, these three chapters are unique because the information and data of 

which they are comprised is from the only field-based study of coyote ecology ever 
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conducted in a large metropolitan area in Michigan. The findings from this research 

provide a clearer picture of the ecology of coyotes in urban environments generally, and 

specifically in the greater Detroit area of southeastern Michigan. Understanding how 

coyotes respond to urbanization is an important component of efforts to manage human-

coyote conflicts and to conserve urban coyotes. Dissemination of these chapters through 

publication in peer-reviewed journals will be useful to natural resource managers, 

municipal planning boards, educators, and other interested parties to help guide 

development and management plans to help reduce human-coyote conflicts and transform 

indiscriminant coyote removal and control into more ecologically justifiable coyote 

management. 
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CHAPTER 1: RECENT DISTRIBUTION OF COYOTES ACROSS AN URBAN 

LANDSCAPE IN SOUTHEASTERN MICHIGAN* 

 

INTRODUCTION 

Urbanization is known to fragment and/or destroy wildlife habitat and alter 

ecological processes that occur within it (McKinney 2002), and much of the ecological 

literature has focused on human encroachment and alteration of wildlife habitat.  

However, species classically adapted to edge habitat (e.g., white-tailed deer (Odocoileus 

virginiana)) and those that utilize human-associated food (e.g., raccoons (Procyon 

lotor)), for example, may benefit from inhabiting urban areas (Adams 2005).  As such, 

understanding the distribution and habitat use by wildlife establishing or re-establishing 

in areas already populated by humans (Adams 2005) warrants additional investigation. 

Coyotes (Canis latrans) have readily adapted to urban landscapes and have 

become a top carnivore in many major metropolitan areas in the last decade (Crooks and 

Soulé 1999; Gompper 2002; Gehrt 2004).  A common result across most studies of 

coyotes in urban areas is that they typically avoid human activity by being nocturnal in 

human-dominated areas (e.g., Atkinson and Shackleton 1991; McClennen et al. 2001; 

Atwood et al. 2004), yet they are often active during the day in more rural or wilderness 

areas (Major and Sherburne 1987; Gese et al. 1989; Kitchen et al. 2000a).  Studies of 

distribution and habitat use of coyotes in urban landscapes have provided mixed results, 

but coyotes are generally associated with green space (undeveloped land partly or 

completely covered with natural and/or naturalized trees, shrubs, grass, or other 

vegetation) within the urban matrix specifically for food, den sites, and diurnal resting  

*Dodge, W.B., and D.M. Kashian. 2013. Recent distribution of coyotes across an urban landscape in 

southeastern Michigan. Journal of Fish and Wildlife Management 4:377–385. 
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cover (Quinn 1997; Riley et al. 2003; Gehrt et al. 2009).  Notably, some researchers have  

found coyote use of green space within urbanized landscapes to be less than expected 

based on its availability (Grinder and Krausman 2001), or that habitat was occupied 

regardless of the presence of humans (Gibeau 1998).  Coyotes will readily move through 

residential and commercial areas, but they do so quickly, covertly, and usually at night to 

avoid humans (Grinder and Krausman 2001; Way et al. 2004; Gehrt et al. 2009).  Most 

studies of coyotes in urban areas have been conducted in southwestern North America 

(e.g., Grinder and Krausman 2001; Riley et al. 2003; Grubbs and Krausman 2009) where 

coyotes were probably never completely extirpated from many metropolitan areas (Gehrt 

and Riley 2010).  Coyote presence in Midwestern and eastern cities is more recent and 

less studied (see Way et al. 2004; Atwood et al. 2004; Gehrt et al. 2009), and likely poses 

a very different set of ecological and societal issues (Gompper 2002). 

In Michigan, coyotes historically inhabited the prairies and oak savannas of the 

southern Lower Peninsula (Baker 1983; Dice 1927) because of the abundant prey species 

these habitats supported.  Coyote populations within wolf (Canis lupus) range were 

limited by interference competition and direct killing of coyotes by wolves (Thurber and 

Peterson 1991; Peterson 1996; Berger and Gese 2007), although temporal resource 

partitioning may have allowed coyotes to co-exist with wolves (Berger and Gese 2007).  

Humans essentially eliminated coyotes from southeastern Michigan as the region 

developed into a major metropolis in the late 19
th

 century.  Coyotes from the Great Plains 

expanded into Michigan to re-occupy their historic range, as well as areas previously 

unoccupied, by the early 20
th

 century.  Human-associated disturbances facilitated coyote 

range expansion across Michigan by promoting the availability of communities of prey 
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species across the landscape (Patterson and Brown 1991).  In addition, state-sponsored 

predator control programs that emphasized wolf removal allowed coyotes to utilize areas 

where they were previously outcompeted (Ballard et al. 2003).  Range expansion and 

population growth of coyotes in Michigan since 1980 (Frawley 2008) has led to their 

increased presence in urban environments including the counties surrounding the 

metropolitan Detroit area in southeastern Michigan.  The recurrence and range expansion 

of coyotes in Michigan and appearance in northeastern North America in general has 

become a major wildlife management challenge, with extremely negative public 

perceptions of coyotes predominating in urban areas (Gompper 2002; Gehrt 2004).  For 

example, homeowners in the Greater Chicago Metropolitan Area rated coyotes highest 

among nuisance wildlife species perceived to pose the greatest threats to human health 

and safety (Miller et al. 2001). 

Coyotes can significantly impact the abundance and community structure of flora 

and fauna through direct and indirect top-down effects.  Coyote exclusion or predation of 

mesocarnivores (Rogers and Caro 1998; Sovada et al. 1995) and predation on small 

rodents (Henke and Bryant 1999), feral domestic cats (Crooks and Soulé 1999), and 

overabundant urban wildlife (e.g., white-tailed deer fawns (Gehrt and Riley 2010)) can 

have both ecological and economic benefits despite a largely negative public perception 

of coyotes.  Understanding coyote distribution and habitat use in urban areas is therefore 

important for providing the most basic data describing how coyotes behave in close 

proximity with humans (Way et al. 2004). We examined the distribution of coyote 

evidence in metropolitan Detroit to address:  (1) What habitats do coyotes utilize in a 

human-modified landscape? and (2) How do coyotes distribute themselves with respect 
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to the arrangement of land cover?  We predicted that coyote evidence would more likely 

be found in areas with a greater proportion of green space and less urban land cover 

regardless of the degree of human development. 

STUDY AREA 

 

The greater Detroit area of southeastern Michigan encompasses portions of 

Livingston, Macomb, Oakland, Washtenaw, and Wayne counties, an area of 

approximately 8,600 km
2 

(Figure 1.1), with a human population of approximately 4.5 

million (SEMCOG 2010). In its urban core (the area where anthropogenic development 

and activity is greatest, impervious surfaces predominate, and green space is lacking 

;Gehrt 2010), human population density of metropolitan Detroit is nearly five times 

greater than in the surrounding suburbs (Table 1.1). Land use in the urban core is 

primarily residential, commercial, industrial, and transportation oriented, with parks, 

recreation areas, and other green space representing only a small proportion of the 

landscape. In the suburbs, land use is predominately residential and agricultural (Table 

1.1). 

Within the urban core existing areas of natural and naturalized vegetation are 

extremely fragmented; most are highly altered river floodplains dominated by grassy 

areas and eastern cottonwood (Populus deltoides), or abandoned lots and old farmland 

dominated by non-native grasses and forbs. Forest remnants are more common in 

suburban areas, and are often second-growth woodlots dominated by oak (Quercus spp.), 

elm (Ulmus spp.), or other tree species that have become established with the reversion of 

former agricultural lands to more natural conditions. The urban core in the region has lost 
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Figure 1.1.  Sample points of coyote (Canis latrans) evidence at 34 locations (urban: n=12; 

suburban: n=22) and sample points lacking coyote evidence at 18 locations (urban: n=13; 

suburban: n=5) sampled between May-September 2009 and June-December 2010 in the 

Detroit, Michigan metropolitan area.  Rings around each sample point signify 1.52-km 

radius buffers encircling each location. 
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about 270,000 people to net out-migration since 2000, while 80% of suburban 

communities situated along the urban boundary have grown in population  

METHODS 

Field Survey 

We performed an extensive survey of urban and suburban areas in metropolitan 

Detroit for coyote evidence (i.e., carcasses, den sites, scats, sightings, or tracks).  Exurban 

areas, defined as the semi-rural region beyond the suburbs, characterized by low density, 

large-lot (> 0.02 km
2
 per unit) development (Daniels 1999) were classified as 

“suburban”for this analysis.  Urban areas were defined as having housing density > 500 

units/km
2
 and human population density > 1000 people/km

2
.  We divided the five-county 

area of southeastern Michigan into 64.0 km
2
 square plots (n = 163), which approximates 

the annual home range size of transient urban coyotes (Gehrt and Riley 2010), and 

randomly selected 25% of these plots (n = 41) for surveying.  We visited 37 plots during 

May – September 2009 and 4 plots during June – December 2010.  Because coyotes are 

generally associated with patches of natural vegetation in developed areas (Gehrt and 

Riley 2010; Riley et al. 2003; Quinn 1997) our survey efforts focused upon state, metro, 

Table 1.1 Comparison of urban and suburban land use in the Detroit, Michigan 

metropolitan area between 2009 and 2010.  Data and land use classes are summarized 

from SEMCOG (2010). 

Characteristic Urban Suburban  

Area (km
2
) 1815 6662  

Human population density (people/km
2
) 1500 280  

Percent residential 47 48  

Percent commercial/industrial/governmental 24 11  

Percent transportation/communication/utility 24 7  

Percent parks/recreation/open space 5 9  

Percent agricultural 0 22  
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county, city, and local parks, golf courses, abandoned industrial and residential sites, and 

undeveloped lots in each plot.  We used unpaved trails (i.e., hiking, biking, horse), 

unimproved roads, margins of roadways, paved trails, railroad beds, and utility rights-of-

way as primary survey transects with start points randomized along these features, based 

on documented coyote propensity to travel and defecate along these features (Macdonald 

1980).  Field reconnaissance was based on communication with local organizations in the 

area (e.g., police stations, animal control centers, nature centers, and local and regional 

newspapers) for evidence and published articles on coyote sightings, control efforts, and 

attacks on pets in the last decade.  We attempted to survey all patches of natural and/or 

naturalized vegetation (both grassland and woodland) within each plot.  Universe 

Transverse Mercator (UTM) coordinates were recorded with a hand-held global 

positioning system (GPS) unit whenever coyote evidence was encountered.  We also 

recorded UTM coordinates at the approximate centroid of areas searched where no 

evidence of coyotes was found. 

Coyote scat was differentiated from that of other canids and raccoons by size, 

shape, content, and nearby sign (e.g., coyote tracks) if present (Murie 1935).  Canid scat 

< 19-mm in diameter is difficult to distinguish between coyote, red fox (Vulpes vulpes; 

Green and Flinders 1981), or gray fox (Urocyon cinereoargenteus; Danner and Dodd 

1982) and was excluded from our analysis.  Contrasting dietary characteristics in this 

region make scat of raccoon, medium-sized domestic dog (Canis familiaris), and coyote 

distinguishable.  Coyote scat tends to be ropelike with tapered ends and often contains 

large amounts of fur, bones, and teeth (Rezendes 1999).  Comparatively, domestic dog 

scat often occurs as amorphous piles or blunt-ended tubes, is foul-smelling, and rarely 
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contains wild prey.  Similar to coyote scat, raccoon scat often contains the remains of 

insects, grains, or fruit seeds due to its omnivorous diet, but rarely does it contain 

mammal hair.  Because coyotes also consume fruit and other plant material, scat that 

contained only fruit was not collected unless other strong coyote evidence was nearby.  

For each coyote scat we recorded the maximum diameter, verifying evidence (size, 

shape, content, and nearby tracks), primary content, and the habitat type in which it was 

found. 

Coyote tracks were separated from other canid tracks by size, shape, trail pattern, 

and other diagnostic characteristics.  Paw impressions measured with a tape measure to 

the nearest 0.1 cm that fell within 5.7 – 8.3 cm L x 3.8 – 6.4 cm W (front) and 5.4 – 7.6 

cm L x 2.9 – 5.1 cm W (rear) with trail width (straddle) > 10.2 cm and stride > 27.9 cm 

(Elbroch 2003) were used to differentiate coyote from fox and small domestic dog.  

Compared to domestic dogs, individual coyote tracks tend to be much neater, register at 

an angle rather than flat (i.e. the palm pad is on a much higher plane than the digit pads), 

the claws are sharp and pointed rather than thick and blunt, and in coyotes the leading 

claws (toes three and four) often register close together and point toward each other 

(Elbroch 2003).  Trails of coyotes are also much cleaner, straighter, narrower, and their 

tracks direct register (i.e., the rear foot is placed exactly where the front foot had been) 

much more often than most domestic dogs (Rezendes 1999).  Entrance holes > 33.0 cm in 

diameter with conspicuous throw mounds of dirt and evidence of prey and scat nearby 

were considered to be coyote dens (Elbroch 2003). 
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Evaluation of Land Cover 

 

Coyote occupancy of different land cover was calculated using a raster 

geographic information system (GIS) land cover types distribution layer of Southeastern 

Michigan (SE Michigan Land Cover 2002; Center for Geographic Information, Michigan 

Department of Information Technology, Lansing, MI) consisting of  three categories: 

urban, open space with grass and scattered trees (hereafter “grassland”), and wooded 

areas.  These categories were selected to encompass a gradient of habitat cover across 

urban and suburban areas.  Locations were buffered within the GIS with a 1.52-km radius 

circle, derived from the grand mean of estimates of annual home range size (7.3 km
2
) of 

urban coyotes across seven studies reviewed by Gehrt (2007).  To ensure that locations 

could be considered independent, locations whose buffers partially overlapped were 

removed from the analysis.  When the choice between buffers to keep was ambiguous, 

buffers retained were those that encompassed the greatest number of evidence locations, 

were furthest apart if there were an equal number of locations within the buffers, and 

were selected to preserve the greatest total number of sample points.  The study area 

boundary was defined by creating a minimum convex polygon using all locations and 

buffering the polygon with a 1.52-km buffer. 

Land cover types contained within buffered locations of coyote evidence were 

summarized across the entire study area and by development class (suburban and urban) 

to determine habitat occupancy in the region.  A chi-square goodness-of-fit test was used 

to compare the observed proportion of land cover categories within buffered locations of 

coyote evidence to their expected proportion calculated from the proportion of land cover 

across the greater study area.  Chi-square analyses were performed by development class 
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and for the pooled data set to determine whether coyotes were selective in their use of 

land cover categories or whether they were located across the categories at random.  We 

used percent deviation as a measure of the degree to which the observed proportion of 

each land cover category differed from the proportion expected for a random distribution.  

A positive percent deviation indicates that the observed frequency is greater than 

expected, while a negative percent deviation indicates that the observed frequency is 

smaller than expected. 

RESULTS 

We recorded evidence of coyotes on 24 of 30 (80%) suburban and 7 of 11 (64%) 

urban plots. Evidence included three road-kills, two den sites, eight groups of tracks, four 

sightings, and 285 scats.  Coyote evidence was ubiquitous, but appeared more widespread 

across suburban plots than in the urban core, where it was more locally distributed.  

Coyote evidence in the urban core averaged 28 locations per plot compared to < 5 

locations per plot in suburban plots, although it remains unclear whether these locations 

represent the same individuals or multiple coyotes.  Using our criteria for considering 

locations to be independent, we identified 34 locations (12 urban, 22 suburban) where 

coyote evidence was present (Figure 1.1). 

Across the study area, coyote evidence was found primarily on unpaved trails and 

unimproved roads within wooded areas or open grasslands often within 15 m of other 

land cover (i.e., edge habitat).  Fifty-eight percent of independent locations of coyote 

evidence were found in edge habitat (Table 1.2).  Den sites and tracks were the only types 

of evidence found strictly in non-edge habitats. All road-killed coyotes were found on 

interstate or state highways bordered by grasslands interspersed with shrubs and/or small  
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Table 1.2. Land cover and adjacent land cover within 15 m of independent 1.52 km 

buffered locations of coyote (Canis latrans) evidence in the Detroit metropolitan area, 

May-September 2009 and June-December 2010.  Records lacking adjacent land cover are 

those located in non-edge habitat. “%” represents the percentage of the land 

cover/adjacent land cover combination within a given evidence type. 

Coyote evidence  

Type n Land cover
a
 Adjacent land cover

a
 %  

Road-kill 3 Urban Grassland 100  

Scat 2 Grassland - 7  

Scat 3 Grassland Trees 11  

Scat 1 Grassland Urban 4  

Scat 5 Trees - 18  

Scat 6 Trees Grassland 21  

Scat 2 Trees Urban 7  

Scat 4 Urban - 14  

Scat 5 Urban Grassland 18  

Tracks 1 Grassland - 50  

Tracks 1 Trees - 50  

Visual 1 Grassland - 100  
a
Urban includes both urban and urban/bare soil land cover categories. 

 

diameter trees. We observed extremely heavy concentrations of scat along a 4.5 km 

length of a heavily industrialized, channelized portion of the Rouge River within the 

urban core in Wayne County. Habitat directly adjacent to the edge created by the  

concrete channel consisted mostly of grassland (~32.0 m wide) and/or small irregularly-

shaped wooded patches. Scats found in non-edge habitat were more often located in 

woodland patches (43%) compared to grassland or urban (each 29%) patches. 

Observations of live coyotes (4) in this study occurred in open areas (grassland or 

agriculture). 

Land cover within the buffer around coyote evidence was occupied differently  

than expected across the entire study area (χ
2
 = 3,121.2, p < 0.0001; Table 1.3, Figure 

1.2A). Compared to the greater study area, buffer areas around coyote evidence included 

higher than expected wooded and grassland land cover, but less urban cover (Table 1.3). 
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Table 1.3. Percent deviation and calculated χ
2 

value for observed and expected (based on 

availability) proportion of land cover surrounding locations of coyote (Canis latrans) 

evidence in the Detroit metropolitan area, May-September 2009 and June-Dec 2010.  A 

positive percent deviation signifies a higher proportion of the landscape in that category 

than expected at random.  P < 0.0001 for all χ
2 

values. 

Land cover category Study Area Suburban Urban  

Grassland + 3.9 - 0.8 + 42.2  

Wooded + 18.1 + 16.3 + 31.7  

Urban - 12.9 - 17.0 - 10.8  

χ
2
 3,121.2 2,190.0 2,342.4  

     

Specific to suburban areas, buffered areas included more wooded and less urban land 

cover than expected (χ
2
 = 2190.0, p < 0.0001; Table 1.3, Figure 1.2B).  In urban areas, 

buffered areas included more wooded areas than the greater study area, as well as more 

grassland than expected, but less urban land cover (χ
2
 = 2342.4, p < 0.0001; Table 1.3, 

Figure 1.2C).  Land cover surrounding areas where no evidence of coyotes was found 

differed from the expected amounts of land cover types across the study area (χ
2
 = 

16,012.4, p < 0.0001) as well as in suburban (χ
2
 = 2,248.9, p < 0.0001) and urban areas 

(χ
2
 = 323.2; p < 0.0001). 

DISCUSSION 

Coyotes are common in both urban and suburban areas in southeastern Michigan. 

Coyote evidence was found in nearly all environmental settings examined in this study, 

including urban areas within and near the city limits of Detroit, suburban areas within 

neighborhoods and on the grounds of major corporations (including Ford Motor 

Company’s World Headquarters in central Wayne County), parks and green space within 

the urban-suburban matrix, and rural or exurban areas in outlying counties (Figure 1.1).   

Notably, coyote presence was not always predictable, as many locations within 



www.manaraa.com

18 

 

(A) 

 
(B) 

 
(C) 

 
Figure 1.2.  Observed proportion of land-cover types contained within buffers (1.52-km 

radius) of  independent locations of coyote (Canis latrans) evidence compared to their 

expected proportion for (A) the greater study area, (B) suburban and (C) urban portions 

of the study area in the Detroit Michigan metropolitan area, May - September 2009 and 

June - December 2010. 
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the types of habitat described above contained no coyote evidence. Coyote evidence was 

repeatedly found in clusters, to the extent that locations in close proximity were 

considered to be non-independent for the purposes of statistical analysis of habitat 

occupancy. Genetic analysis of DNA isolated from coyote scat would clarify whether 

these clustered locations of coyote evidence represent transient and/or nomadic, solitary

individuals, or whether we have documented resident, territorial family groups, or 

resident populations, and should be employed in future research.  DNA analysis could 

also be used to unambiguously differentiate coyote scat from other sympatric carnivores 

(Foran et al.  1997), obtain short-term coyote population estimates (Kohn et al. 1999), 

and monitor long-term population dynamics of coyotes (Prugh et al. 2005) in 

southeastern Michigan. 

The observed proportion of urban land cover surrounding coyote evidence was 

less than expected across the pooled study area as well as in urban and suburban areas 

individually (Table 1.3), consistent with other studies that show coyotes avoid more 

developed areas regardless of whether they are found in urban or suburban environments 

(e.g., Quinn 1997; Tigas et al. 2002; Gehrt et al. 2009). Landscape composition 

surrounding locations of coyote evidence across the study area suggests that availability 

and access to habitat with cover – particularly areas with trees – appears to be more 

important to coyotes than the presence of open space or undeveloped areas.  Although 

coyote evidence in the field was rarely located within interior wooded areas, cover habitat 

provided by wooded areas is likely important for den and rendezvous sites especially in 

human-dominated landscapes where coyotes can avoid and remain hidden from humans 

except when traveling (Grinder and Krausman 2001; Way et al. 2004; Gehrt et al. 2009). 
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Wooded land cover was also a major component of buffer areas in both urban and 

suburban settings (Figures 1.2B, 1.2C).  Coyote occupancy was less common in urban 

and open areas compared to wooded land cover and undeveloped woodlots, presumably 

because of the tree cover they provide, but also probably because of abundant prey 

available near the edges of wooded areas.  The propensity for coyotes to remain near 

wooded areas may be one explanation for the ability of urban coyotes to avoid humans 

despite their prevalence in heavily-populated areas (Riley et al. 2003; George and Crooks 

2006; Gehrt et al. 2009). 

Land cover surrounding locations where no coyote evidence was found consisted 

of a greater proportion of urban and lesser proportions of wooded areas and grasslands 

than expected across both the pooled study area and in suburban areas.  This outcome 

appears to support the importance of cover habitat for coyotes and their avoidance of 

urban areas.  The outcome was more ambiguous in urban areas where the observed 

proportion of wooded land cover surrounding non-evidence points was greater than 

expected, with grassland and urban land cover occurring less than expected.  Our field 

sampling may have been biased against finding coyote evidence in heavily urban land 

cover because of our focus on green space within the urban matrix, and studies tracking 

the movement of individual coyotes in urban environments are clearly necessary to 

discern where urban coyotes allocate their time. 

Habitat patches in urban areas were generally smaller, more isolated and 

fragmented, and consisted of more non-native plant species than those in suburban areas.  

Competition for limited high quality habitat, particularly in urban areas, may force 

subordinate coyotes into more marginal habitats with a greater proportion of urban land 
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cover and less wooded areas and grasslands.  Coyotes have naturally re-colonized the 

most urbanized and human-modified landscapes in the Detroit metropolitan area, 

probably in part due to the recent economic decline in southeastern Michigan that has 

resulted in the reversion of many sites into naturalized areas that are often utilized by 

wildlife.  Like many urban areas, however, metro Detroit has long been interspersed with 

numerous parks, golf courses, highway interchanges, and other human-created green 

spaces that provide habitat for coyotes.  Based on this historical land coverage alone, we 

speculate that coyotes were probably never limited by habitat in southeastern Michigan.  

The fact that coyote abundance in the region was increasing even during the height of 

land development in the late 1990s supports the assertion that habitat was not likely 

limiting. Although human-associated foods are available in urban areas, coyote diets are 

typically dominated by food items associated with natural areas (Morey et al. 2007; W. 

B. Dodge, Wayne State University, unpublished data) and human-associated foods are 

therefore not likely to be a primary driver of the distribution of coyotes in metro Detroit.  

Rather, we speculate that re-occupation of southeastern Michigan by coyotes likely 

occurred as a consequence of an expanding coyote population and increased competition 

for limited space in outlying rural and exurban areas.  An accurate estimation of the 

coyote population is necessary to determine if current population levels in southeastern 

Michigan have stabilized or if coyotes will continue to expand into suburbs and cities of 

the area to fill unoccupied habitat. 

Increased coyote abundance in southeastern Michigan may have implications 

from both an ecological and economic perspective.  Notably, coyote presence in the 

Detroit area and elsewhere in Midwestern and eastern North American metropolitan areas 
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represents the range expansion of a native species rather than invasion of an exotic 

species (Gompper 2002), and thus is an important conservation issue.  From a utilitarian 

perspective, coyotes have the potential to play a keystone role in limiting the population 

growth of nuisance urban wildlife.  For example, coyote predation in Chicago has been 

considered as an important bio-control limiting the population growth rate of Canada 

geese (Branta canadensis L.; Brown 2007);  reducing the growth rate of high-density 

urban white-tailed deer populations through predation of fawns (Gehrt and Riley 2010); 

and limiting the abundance of small rodents (e.g., voles (Microtus spp.) and mice 

(Peromyscus spp.)), which most often make up the bulk of coyote diets in urban and 

suburban areas (Morey et al. 2007).  In rural Texas, experimental removal of coyotes to 

protect sheep resulted in a dramatic increase in rodent abundance and decrease in rodent 

diversity (Henke and Bryant 1999); coyotes may serve a similar ecological role in urban 

and suburban areas. 

Despite the potential positive aspects of urban-dwelling coyotes, the focus of 

coyote management in urban areas will inevitably be on human-coyote conflicts 

(Gompper 2002; Way et al. 2004; Gehrt and Riley 2010) as it has been historically.  The 

challenge for wildlife managers in urban landscapes is balancing the needs of coyotes and 

their coexistence with humans with preventing and mitigating conflicts with humans, 

typically through removal.  Coyote reduction has already been a focal point for several 

communities in metropolitan Detroit as a response to predation on small pets (Cravens, J., 

City Manager, Bloomfield Hills, personal communication) and game species.  Coyote 

populations compensate for reductions in numbers by increases in rates of immigration, 

reproduction, and survival of the remaining individuals, resulting in maintenance of 
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coyote populations in a perpetual state of colonization (Crabtree and Sheldon 1999; 

Knowlton et al. 1999).  Efforts to reduce coyote numbers are unlikely to be effective 

unless >70% of the individuals in a population are continually removed on an annual 

basis (Connolly 1995; Connolly and Longhurst 1975) across a large geographic region 

(Gompper 2002).  We suggest that coyotes have minimal negative impact on humans and 

that indiscriminant lethal control is likely to be counterproductive, given the benefits of 

coyote presence in urban areas (especially the reduction of undesirable prey species).  

Moreover, we believe the goal of coyote management in urban areas such as metropolitan 

Detroit should be human-coyote coexistence, as the ecosystem services provided by 

coyotes may increase human well-being and overall environmental quality. 
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CHAPTER 2: ANALYSIS OF COYOTE DIETS AND FORAGING PATTERNS IN 

THE GREATER DETROIT AREA OF SOUTHEASTERN MICHIGAN 

     

INTRODUCTION 

Understanding the diet and foraging patterns of coyotes (Canis latrans) is 

fundamental to determining their role as a top predator and gaining insight into the 

dynamics of human-coyote conflicts in urban landscapes. Coyote attacks on human 

companion animals, particularly small domestic dogs (C. lupus familiaris), are a major 

societal and wildlife management challenge in developed areas (Gehrt and Riley 2010). 

Although extremely rare, coyote attacks generate sensational media coverage that often 

creates a public perception of increased risk (Riley and Decker 2000). Coyote habituation 

to humans typically through positive food conditioning is often a precursor to coyote loss 

of fear and aggression towards humans (Curtis and Hadidian 2010; Timm et al. 2004). 

Even with access to anthropogenic food sources (Gill and Bonnett 1973) however, 

coyotes inhabiting developed environments typically consume natural foods (Atkinson 

and Shackleton 1991, Quinn 1997, Fedriani et al. 2001, Morey et al. 2007). This diet 

reflects the coyotes’ dependency on green space (undeveloped land partly or completely 

covered with natural and/or naturalized trees, shrubs, grass, or other vegetation) within 

the urban matrix (Quinn 1997; Riley et al. 2003; Gehrt et al. 2009; Dodge and Kashian 

2013). In contrast, several studies have suggested that coyotes nearest urban centers tend 

to have diets containing a greater proportion of human-associated foods than those 

inhabiting exurban or suburban areas (Quinn 1997, Fedriani et al. 2001, Morey et al. 

2007). Despite greater acceptance of urbanization, however, coyotes largely restrict 

foraging to nocturnal hours and disappear in wooded cover during the daytime in human-
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dominated areas (e.g., Atkinson and Shackleton 1991; McClennen et al. 2001; Atwood et 

al. 2004; Dodge and Kashian 2013). Refraining from daytime activity appears to be an 

adaptation for avoiding humans because coyotes in natural, undisturbed areas are often 

most active during daylight hours (Gese et al. 1996, Kitchen et al. 2000a) and evidence 

indicates that coyote vision is best adapted to diurnal and crepuscular activity (Ramous 

and Kavanaugh 1975). 

Traditionally, coyotes have been considered an archetypal example of an 

opportunistic, generalist predator because they have a broad food niche and consume 

prey in proportion to local and seasonal availability (Young and Jackson 1951, Bekoff 

1978, Van Vuren and Thompson 1982, Sacks and Neale 2002). Prey switching, whereby 

a predator increases selection of a prey species when it is abundant and decreases 

selection when it is scarce, is a foraging strategy commonly associated with generalist 

predators (Murdoch 1969, van Baalen et al. 2001). Research in urban areas mostly 

supports these characterizations with both spatial and temporal variation in the 

occurrence of prey items in coyote diets (Atkinson and Shackleton 1991, Quinn 1997, 

Fedriani et al. 2001, Morey et al. 2007).  Studies outside urban areas (e.g., O’Donoghue 

et al. 1998, Prugh 2005), however, have found coyotes to be selective predators whose 

foraging patterns show strong synchrony with fluctuations in snowshoe hare (Lepus 

americanus)  populations (in terms of handling time, medium-sized lagomorphs are the 

coyote’s most profitable prey; Bekoff and Wells 1986, MacCracken and Hansen 1987).  

Optimal foraging theory predicts that the most energetically profitable prey will 

be consumed disproportionately (i.e., selectively) to availability and that feeding on less 

profitable prey will occur on a continuum of decreasing profitability only when the 
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density of the most profitable prey drops below some critical threshold (Charnov 1976, 

Krebs 1978). Predator foraging patterns and the rate at which they encounter prey are 

defined by the inherent spatial heterogeneity in prey distribution (Hansson 1989, Prugh 

2005, Kauffman 2007). Widespread alteration of the spatial structure of landscapes in 

developed areas has dramatically changed prey aggregation patterns (Fortin et al. 2015) 

and hence predator foraging patterns. Outcomes from different landscapes indicate that 

coyotes are not strictly generalist predators that consume prey in proportion to 

availability, but often specialize on the most profitable prey depending on ecological 

conditions (Prugh 2005). Predators inhabiting landscapes where prey is spread across 

large, contiguous habitat patches (e.g., wilderness, rural, and to a much lesser extent 

suburban areas) should specialize on the most profitable prey (MacArthur and Pianka 

1966). In contrast, on highly fragmented landscapes (e.g., urban) where prey are 

distributed in habitat patches that are small relative to the area searched during foraging, 

predators will feed opportunistically on the most abundant prey.  

I examined coyote diets and foraging patterns in the greater Detroit area of 

Michigan to determine if coyotes preferentially select particular prey (i.e., forage 

optimally) or switch to the most available alternative prey (i.e., forage opportunistically). 

I specifically addressed the following questions: 

1) How does coyote diet vary with level of urbanization and among important 

coyote biological periods in a large metropolitan area? 

2) Does the density and biomass of the primary prey of coyotes within a large 

metropolitan area vary with level of urbanization and across biological 

periods? 
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3) How does variation in availability of prey biomass affect the foraging patterns 

of coyotes across a large metropolitan area? 

I hypothesize that the diets of coyotes residing in urban areas will  reflect an 

opportunistic foraging strategy, whereas those in less developed suburban areas will 

exhibit an optimal foraging strategy, preying specifically on eastern cottontail rabbit 

(Sylvilagus floridanus), the only lagomorph present in the greater Detroit area. Although 

numerous studies examining coyote diets have been conducted in developed areas, no 

studies have closely examined coyote foraging patterns in relation to different levels of 

urbanization in a large metropolitan area. 

STUDY AREA 

 

The greater Detroit area of southeastern Michigan encompasses portions of 

Livingston, Macomb, Oakland, Washtenaw, and Wayne counties, an area of 

approximately 8,600 km
2
, with a human population of approximately 4.5 million 

(SEMCOG 2010).  In its urban core (the area where anthropogenic development and 

activity is greatest, impervious surfaces predominate, and green space is lacking (Gehrt 

2010)). Land use in the urban core is primarily residential, commercial, industrial, and 

transportation oriented, with parks, recreation areas, and other green space representing 

only a small proportion of the landscape.  In the suburbs, land use is predominately 

residential and agricultural. 

Within the urban core existing areas of natural and naturalized vegetation are 

extremely fragmented; most are highly altered river floodplains dominated by grassy 

areas and eastern cottonwood (Populus deltoides), or abandoned lots and old farmland 

dominated by non-native grasses and forbs.  Forest remnants are more common in 
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suburban areas, and are often second-growth woodlots dominated by oak (Quercus spp.), 

elm (Ulmus spp.), or other tree species that have become established with the reversion of 

former agricultural lands to more natural conditions.  

METHODS 

Coyote diet   

Coyote diet was assessed through identification of remains of food items (e.g., 

claws, fur, teeth, seeds) recovered in coyote scat collected along 12 pre-determined routes 

ranging in length from 5.60 – 7.60 km (�̅� = 6.38 ± 0.19 SE) located in urban and 

suburban landscapes in the greater Detroit area. Relative urbanization level was 

quantified by land cover and mean road, housing, and human population density within a 

64.0 km
2
 areal area (the approximate annual home range size of transient urban coyotes; 

Gehrt and Riley 2010) encircling GPS locations of coyote scat collected along sampling 

routes (Table 2.1). Sampling routes were established along hiking/biking trails, dirt roads, 

road margins, and other linear features where coyote activity had been previously 

documented (Dodge and Kashian 2013). Sampling routes were initially cleared of all 

scats and subsequently traversed at approximately 5-week intervals. I used content, 

shape, size, and nearby sign when present to distinguish coyote scat from that of other 

urban carnivores (Murie 1935, Elbroch 2003). Because coyote, red fox (Vulpes vulpes), 

and grey fox (Urocyon cinereoargenteus) scat are difficult to differentiate based on 

content alone and may overlap in size, scats < 19-mm in diameter (the maximum 

diameter of fox scat; Elbroch 2003) were excluded from my analysis. To detect seasonal 

dietary differences, as recommended by Trites and Joy (2005), I collected 20 to 30 scats 

during the coyote breeding-gestation (Jan 1 – Apr 30), pup-rearing (May 1 – Aug 31), 
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and dispersal (Sep 1 – Dec 31) periods (adapted from Laundre and Keller 1981). Scats 

used for analysis were randomly selected in equal numbers from samples collected along 

each survey route then collectively segregated by biological period within urban and 

suburban locations.  

 Dried scat samples were placed individually in nylon stockings along with 

uniquely colored plastic disks and soaked in soapy water for 24 – 48 hours. Scats were 

then cleansed and rinsed through a 0.05-mm mesh sieve to remove the water soluble 

waste and retain the partially digested and undigested remains. Cleansed scats typically 

consisted of large amounts of fur intertwined with bones, teeth, and claws which were 

hand separated, oven dried at 60°C for two hours, and weighed to the nearest 0.10 g. 

Bones, claws, and teeth of mammals were identified using skeletons assembled from 

Wayne State University’s Museum of Natural History collection, road-killed specimens, 

and identification manuals (Jones and Manning 1992). Plant material was identified 

macroscopically using a reference collection of seeds and fruits, and insects by 

exoskeleton remains. I created a microscopic slide reference collection of fur of potential 

mammalian prey that was used in conjunction with identification guides to identify fur 

recovered in scats (Moore et al. 1997). Fur was evenly spread over a square transparent 

reference grid consisting of 16 quadrants and individual hairs were chosen from the 

center of 10 randomly selected quadrants for identification. Fur size (length and 

coarseness), color, and banding pattern, presence/absence of a shield, and medulla and 

cuticle scale patterns were used to identify fur to species whenever possible (Moore et al. 

1997). Fur identified as vole (Microtus spp.) and mice (Peromyscus spp.) were combined 

for statistical analysis. 
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Prevalence of prey items in coyote diets were examined using the calculation 

developed by Prugh (2005) for percent weighted occurrence:  

%𝐖𝐎 i = ∑ 𝐗is 𝐙is

𝑺

𝒔

∑ 𝐗𝐙,

𝑰

𝒊

⁄  

where Xis = occurrence of prey i in scat s and Zis = weighted proportion of prey i in scat s, 

divided by the total weighted occurrence of all prey items in the diet. The weighting 

factor (Z) scaled from 1 to 5 is based on the relative proportion of prey items found in 

scats, where, 1 = < 2%, 2 = 2 - 25%, 3 = 26 - 50%, 4 = 51 - 75%, and 5 = 76 - 100%. 

Proportional estimates of prey based on bones, claws, and teeth were made visually; 

those from fur were calculated by dividing the number of hairs of an identified prey 

species by 10.  

Prey with a body mass of 10 to 108 g (the weight below which Weaver and 

Hoffman (1979) estimated detection of prey remains in coyote scat equaled 

consumption), were classified as small prey, rat- (Rattus norvegicus;140 g minimum) to 

raccoon-sized (10,000 g maximum) mammals medium-sized prey, and white-tailed deer 

(> 16,000 g) large prey. Deer fur recovered in coyote scats collected during the neonatal 

white-tailed deer postpartum period (May – August), when deer are most vulnerable to 

coyote predation (Duquette et al. 2014, Vreeland et al. 2004, Ballard et al. 1999) was 

considered to be remains of neonates or older fawns. I assumed that small- and medium-

sized prey was completely consumed, neonate and older fawn white-tailed deer 90% 

consumed, and adult white-tailed deer 80% (Patterson et al. 1998). 

The number of small prey (Nprey i) in scats was estimated by:  
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𝑵𝒑𝒓𝒆𝒚𝒊
=  ∑ 𝑾𝒔𝑷𝒊𝒔 

𝑺

𝒔

𝒀𝒊⁄ , 

where Ws = dry weight of scat s, Pis = proportion of fur of species i in scat s, Yi = average 

dry weight of fur of species i determined using the regression equation: Yi = 0.1541 + 

0.0195Xi (where Xi = average body weight of species i) developed by Gamberg and 

Atkinson (1988).  In instances where fur of small prey was unavailable (~20% of 

samples) I used diagnostic parts (mostly incisors and molars) that provided the highest 

count (Murie 1935). Remains of medium- and large-sized prey found in coyote scat were 

recorded as a single individual regardless if multiple items were recovered. 

Biomass estimates of mammalian prey consumed by coyotes were calculated by 

multiplying counts of prey species recovered in scat by the mean body mass of the 

respective prey species. Mean body mass of small rodents was calculated from my 

trapping data (see below), and that of other species obtained from the literature (eastern 

cottontail rabbit, 1,120 g; Hunt et al. 2013, white-tailed deer (adult), 46,100 g; Robbins et 

al. 1974, white-tailed deer (neonate and older fawns), 31,100; Watkins et al. 1991, other 

mammals; Kurta 1995). I used different mean body mass values for biomass calculations 

of small rodents captured at urban (�̅� = 20.92 ±0.34) and suburban (�̅� = 19.13 ±0.25) sites 

because the values differed significantly (t = 4.15, df  = 1049, P < 0.001). Biomass 

estimates of small- and medium-sized prey were adjusted downward by 3% to account 

for undigested fur. White-tailed deer biomass estimates were also reduced by 20% to 

account for partial consumption of deer carcasses. Relative proportion of consumed 

biomass within biological period was calculated by dividing site-averaged consumed 
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biomass of each prey species by the sum of consumed biomass of all prey species within 

the site.     

I tested differences in relative proportion of consumed biomass of prey between 

urbanization level and among biological periods with a repeated-measures 

PERMANOVA based on Bray-Curtis dissimilarities (Anderson et al. 2008), using 

PRIMER-6 software (Clark and Gorley 2006), with urbanization level as the between-

subject factor and period as the repeated measure. Significant results were followed by 

repeated-measures ANOVA within each taxon to test for the effects of urbanization level 

and biological period. For all statistical tests, p-values < 0.05 were considered significant. 

I considered p-values > 0.05 but ≤ 0.10 to be marginally significant, and present these 

results for the reader's interpretation. 

Prey density and available biomass 

 

Small rodent density. The density of small rodents was estimated using spatially 

explicit capture-recapture (SECR) models (Efford 2004). Circular trapping webs 

consisting of 12 radial trap lines of 80 m each were replicated at each site (Anderson et 

al. 1983). Trap lines included 10 Sherman live traps alternated by size (large: 8 x 9 x 23 

cm; small: 5 x 6 x 15 cm) at the beginning of each line as well as along the trap line itself, 

the first 4 traps were placed at 5-m intervals from the center, and the next 6 traps at 10-m 

intervals. An additional 4 traps were placed at the web center for a total of 124 traps. The 

area of the trapping web (2 ha) was > 16 times as large as the average home range size of 

our suite of small mammal study species (Bondrup-Nielson 1983). For the two major 

small rodent taxa in our study (Microtus and Peromyscus), average home range area 

estimated from body mass using allometric equations (Harested and Bunnell 1979) 
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ranged from 0.02 to 0.11 ha. Trapping sessions were conducted during coyote breeding-

gestation, pup-rearing, and dispersal periods to test for seasonal variation in small rodent 

density. Traps were baited with peanut butter and rolled oats, set in the evening of Day 1, 

then checked, disabled in the morning, and re-set and bait refreshed in the evening over 

the next four consecutive days. Small mammals captured were weighed to the nearest 0.1 

g and marked with an ear-punch using a modified universal mouse numbering system 

(Dickie 1975). All field procedures were approved by Wayne State University’s 

Institutional Animal Care and Use Committee and met the guidelines recommended by 

the American Society of Mammalogists (Gannon et al. 2007). 

I used likelihood-based procedures for closed population mark-recapture data in 

the R package secr-2.9 (Efford 2011). SECR fits a spatial model of the population and a 

spatial model of the detection process to the capture histories of trapped animals. The 

population model describes the density D of animal home range activity centers across 

the landscape (�̂�, the estimated value of D, is the population density). The detection 

model links the probability, g0, of catching an individual at a particular trap to the 

distance, σ of the trap from that animal’s home range activity center (Royale et al. 2014). 

The distribution of home range activity centers in the population is typically modelled as 

a homogenous Poisson point process (Borchers and Efford 2008). The decline in 

detection probability can be modelled using either half-normal (HN), negative 

exponential (NE), or hazard (Hz) detection functions. Like traditional Mark-capture-

recapture (MCR) models, SECR also accommodates variations in detection probability 

(e.g., M(t) – “time factor” where g0 takes on a unique value at each sampling occasion). 

SECR fits the spatial model of the population (�̂�) and the detection process (𝒈�̂� and �̂�) to 
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the captured animals’ detection histories by numerically maximizing the likelihood 

(Borchers and Efford 2008). In addition to the assumptions of closed-population MCR 

models (e.g., no turnover in population, marks are accurately reported; Otis et al. 1978) 

SECR models assume that (1) animals occupy stationary and independent home ranges, 

(2) home range activity centers are uniformly distributed in space, (3) the state-space 

(i.e., potential locations for any activity center) is defined, and (4) capture probability is a 

function of the Euclidian distance between an animal’s activity center and the trap 

location (Efford et al. 2004). 

Seasonal density of small rodents was estimated at each site and pooled by 

urbanization level. Season was treated as a covariate listed in the ‘groups’ argument of 

the R function secr.fit(). For site-specific data sets, I used the model selection procedures 

in the program CAPTURE, which employs multivariate discriminant function analyses to 

determine the “best” detection probability model (Otis et al.1978), which was 

subsequently used as the detection parameter in the ‘model’ argument of secr.fit(). For 

the pooled data sets, I used the R function: stepAIC() to eliminate non-significant higher-

order interactions from the saturated model, to determine the “best” fit model (i.e., the 

model with the lowest AIC value). Models were ranked based on the difference between 

the lowest AIC value  and the AIC value of the other i models (Δi = AICi - AIClowest  

Eastern cottontail rabbit density. Counts of eastern cottontail rabbit (Sylvilagus 

floridanus) fecal pellets were used to estimate rabbit density. To detect differences in 

pellet counts between suburban and urban sites, as recommended by Palomares (2001), I 

placed 15 to 20, 0.7-m diameter (0.38 m
2
) plots at each site. Plots were placed at least 50 

m apart (the approximate average summer foraging distance of eastern cottontail rabbits; 
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Janes 1959) along a 750 – 1000 m long meandering transect in edge habitat with dense 

cover where observed rabbit use was high. Plots were initially cleared of all existing fecal 

pellets and debris (e.g., twigs and rocks), and herbaceous cover and woody stems cut to 

the ground and discarded. Plots were subsequently re-located and fecal pellets counted at 

intervals so as to coincide with the coyote breeding-gestation, pup-rearing, and dispersal 

periods. Rabbit density was estimated using the equation:  

�̂�  =
�̅�

𝒕𝒓𝒂 
 

where �̂� = estimated rabbit density, �̅� = mean pellet count per plot, t = days between 

counts, r = rabbit defecation rate (350 pellets/day; Cochran and Stains 1961), and a = 

area of sampling unit (Novaro et al. 1992).  

I used repeated-measures ANOVA with urbanization level as the between-subject 

factor and biological period as the repeated measure to test for effects of urbanization 

level and biological period on small rodent and rabbit density. Density estimates were 

transformed as ln(X + 1) to meet the assumptions of ANOVA. Normality was tested with 

the Shapiro-Wilk W test, homogeneity of group variances with an Fmax test, and equality 

of the variances of the differences between all possible pairs of groups with Mauchly’s 

test of sphericity. Significant differences were evaluated using pairwise t-tests with alpha 

error accumulation corrected with the Holm-Bonferroni method.  

White-tailed deer carcass numbers. To estimate the number of deer-vehicle 

collisions (DVCs) in the study area, I created a geographic information system (GIS) 

shapefile of locations of DVCs in southeastern Michigan for June 2012 – October 2013 

obtained from the Southeastern Michigan Council of Governments (SEMCOG). For each 
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study site, the numbers of DVCs that fell within a 64.0 km
2
 areal area encircling GPS 

locations of coyote scat found at the site (see above) were tallied. Counts of DVCs were 

increased by 50% to account for those that go unreported (Decker et al. 1990). I used 

maximum likelihood chi-square analyses of a 2 x 3 (urbanization level x period) 

contingency table to determine if observed number of DVCs differed from expected 

among periods between urbanization levels.  

Available biomass.  Available biomass of small rodents, eastern cottontail rabbit, 

and adult white-tailed deer were calculated by multiplying density estimates and counts 

of DVC by the mean body mass of the respective prey (see above). I tested differences in 

the relative proportion of available biomass of the top three most-consumed prey between 

urbanization level and among biological periods with repeated-measures ANOVA.  

Significant results were followed by Holm-Bonferroni-adjusted paired t-tests. 

Coyote Prey Selection 

Coyote selection of small rodents, eastern cottontail rabbit, and white-tailed deer 

(the top 3 prey found in coyote diets) were examined using selection ratios (relative 

consumed biomass/relative available biomass or �̂�) and Manly’s standardized selectivity 

index (Manly et al. 2002):  

�̂�𝒊  = (𝒅𝒊 𝒏𝒊⁄ ) ∑(𝒅𝒋 𝒏𝒋⁄ )

𝒎

𝒋=𝟏

⁄ , 

where di and dj are the relative proportion of biomass of prey i and j in the diet, ni and nj 

are the relative proportion of biomass of prey i and j in the environment, and m is the 

number of different prey. The selectivity index reflects the deviation in prey use from 

what would be expected if use were purely random (Heisey 1985). Importantly, �̂�𝒊 does 
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not change with fluctuations in prey density unless consumer behavior also changes 

(Chesson 1983). Manly’s standardized selectivity indices were used to determine prey 

selection among the top 3 prey types and identify the direction in which selection 

occurred. �̂�𝒊 > 1/m indicates positive selection, �̂�𝒊 < 1/m non-selection, and �̂�𝒊 = 1/m, 

random feeding (Manly et al. 2002). To determine whether coyotes are selective foragers, 

I performed a log-likelihood chi-squared test of the null hypothesis that coyotes randomly 

consume prey in proportion to availability. A significant outcome was followed by 

conducting pairwise comparisons of differences in seasonal prey selection ratios by 

comparing the statistic(�̂�𝒊 − �̂�𝒋)
𝟐

𝒗𝒂𝒓(�̂�𝒊 − �̂�𝒋)⁄ , (where i and j are seasons), with the 

critical values of the chi-squared distribution with 1 degree of freedom (Manly et al. 

2002). To test if joint relationships and interactions among the categorical factors 

urbanization level, season, and prey type affected coyote prey selectivity, I conducted a 

log-linear analysis using the R function glm(). Individual cell frequencies of the 

underlying contingency table of the log-linear model were based on the corresponding 

expected proportion of a particular prey-type, season, urbanization level combination 

(Heisey 1985). A likelihood-ratio G-test was used to test for independence of each two-

way combination of categorical factors and categorical factors collectively, as well as 

categorical factor interactions, with a significant season\prey interaction statistical 

evidence of prey switching (Randa et al. 2009). Akaike’s Information Criteria (AIC) was 

used to numerically rank the models based on the difference between the lowest AIC 

value of the best fitting model and the individual AIC values of the other i models (Δi = 

AICi – AIClow). 
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RESULTS 

Coyote diet 

I collected 741 coyote scats (suburban: n = 257; urban: n = 484) during August 

2010 – April 2013. To insure that dietary differences between urbanization level and 

among biological periods could be detected, ≥ 30 scats per biological period were 

analyzed from urban (n = 102 scats) and suburban (n = 90 scats) sampling routes. Based 

on estimated biomass consumed, the two highest-ranked prey items, regardless of 

urbanization level, were white-tailed deer and eastern cottontail rabbit. Consumed 

biomass of small rodents was the third ranked item in suburban areas, whereas 

woodchuck was the third ranked in urban areas (Table 2.2). With the exception of 

raccoon in suburban areas, %WO proportions were lower for larger-sized prey and 

greater for smaller-sized prey compared to proportions of consumed biomass (Table 2.2). 

Other mammalian prey consumed by coyotes included tree squirrel (Sciuris spp.) and 

muskrat (Ondatra zibethicus). Evidence of human-associated foods (e.g., fast-food or 

candy wrappers, rubber, plastic, string, aluminum foil) was found only in urban areas and 

only during the breeding-gestation and dispersal periods. Annually, evidence of domestic 

cat (Felis catus; n = 3 scats) in coyote diets was < 5% regardless of method of estimation 

(Table 2.2, Appendix A, B). 

 Coyote consumption of prey biomass was significantly affected by urbanization 

level (F = 5.24 df = 1, 26, P < 0.001, repeated measures PERMANOVA), but not period, 

and no interaction was detected between urbanization level and period. This result is 

probably largely driven by the large difference in coyote consumption of white-tailed 



www.manaraa.com

40 

 

T
ab

le
 

2
.2

. 
C

o
m

p
ar

is
o
n

 
o
f 

th
e 

es
ti

m
at

ed
 

re
la

ti
v
e 

p
ro

p
o
rt

io
n
 

o
f 

b
io

m
as

s 
co

n
su

m
ed

 
an

d
 

w
ei

g
h
te

d
 

fr
eq

u
en

c
y
 

o
f 

o
cc

u
rr

en
ce

 
(%

W
O

) 
an

d
 

co
rr

es
p
o
n
d
in

g
 o

v
er

al
l 

ra
n
k

in
g
s 

o
f 

th
e 

7
 m

o
st

 c
o
n
su

m
ed

 m
am

m
al

ia
n
 p

re
y
 r

ec
o
v
er

ed
 i

n
 c

o
y
o
te

 (
C

a
n
is

 l
a
tr

a
n
s)

 s
ca

ts
 c

o
ll

ec
te

d
 i

n
 t

h
e 

g
re

at
er

 

D
et

ro
it

 a
re

a 
o
f 

so
u
th

ea
st

er
n

 M
ic

h
ig

an
, 
A

u
g
u
st

 2
0

1
0
 –

 A
p
ri

l 
2
0
1
3
. 

 

S
u
b
u
rb

an
 

 

U
rb

an
 

 

B
io

m
as

s 

 

W
ei

g
h
te

d
 o

cc
u
rr

en
ce

 
 

 
B

io
m

as
s 

 

W
ei

g
h
te

d
 o

cc
u
rr

en
ce

 
 

P
re

y
 i

te
m

 
R

el
 %

 
S

E
 

R
an

k
 

 

%
 

S
E

 
R

an
k

 
n
 s

ca
ts

 

 

R
el

 %
 

S
E

 
R

an
k

 

 

%
 

S
E

 
R

an
k

 
n
 s

ca
ts

 

W
h
it

e-
ta

il
ed

 d
ee

r 
4
6
.2

6
 

6
.0

8
 

1
 

 

2
1
.5

5
 

0
.0

8
 

2
 

3
8
 

 

1
9
.4

4
 

4
.4

5
 

2
 

 

8
.3

9
 

0
.7

4
 

5
 

2
4
 

R
ab

b
it

 
2
5
.9

8
 

6
.8

0
 

2
 

 

3
9
.0

8
 

1
.9

3
 

1
 

4
7
 

 

2
0
.6

4
 

4
.5

0
 

1
 

 

2
3
.7

4
 

0
.7

4
 

2
 

3
9
 

S
m

al
l 

ro
d
en

t 
9
.4

9
 

3
.8

5
 

3
 

 

1
9
.3

4
 

0
.9

1
 

3
 

4
2
 

 

1
5
.3

3
 

3
.6

5
 

4
 

 

3
7
.9

8
 

1
.0

0
 

1
 

6
0
 

D
o
g

 
6
.2

3
 

2
.5

5
 

4
 

 

3
.1

4
 

2
.4

4
 

5
 

7
 

 

2
.8

3
 

1
.2

9
 

7
 

 

0
.2

5
 

0
.1

8
 

7
 

1
5
 

R
ac

co
o
n
 

4
.5

0
 

1
.8

4
 

5
 

 

6
.4

9
 

2
.2

6
 

4
 

9
 

 

1
4
.6

7
 

4
.4

9
 

5
 

 

7
.0

1
 

1
.4

0
 

6
 

2
0
 

W
o
o
d
ch

u
ck

 
3
.6

9
 

2
.3

6
 

6
 

 
2
.7

7
 

1
.3

1
 

7
 

8
 

 
1
7
.6

9
 

4
.1

2
 

3
 

 
1
3
.1

9
 

1
.9

2
 

3
 

8
 

M
u
sk

ra
t 

2
.6

1
 

1
.0

3
 

7
 

 

2
.9

7
 

1
.1

3
 

6
 

5
 

 

8
.0

0
 

3
.4

6
 

6
 

 

8
.7

1
 

1
.5

7
 

4
 

3
 

 



www.manaraa.com

41 

 

Figure 2.1. Estimated proportion (±SE) of biomass of the seven most consumed prey of 

coyotes at urban and suburban areas in the greater Detroit area of southeastern Michigan, 

August 2010 – April 2013. Letters above column error bars that differ indicate significant 

differences (P < 0.05). 

 

deer biomass between urban and suburban areas (Figure 2.1). When examining responses 

of individual taxa using univariate repeated measures ANOVA, there were no strong 

effects of period or a period-by-urbanization-level interaction of consumed biomass for 

any of the taxa. The exception was small rodents which showed a marginally significant 

period-by-urbanization-level interaction (F = 3.06, df = 2, 16, P = 0.08, repeated 

measures ANOVA). Separate analyses of suburban and urban sites produced no effect of 

period on consumption of small rodent biomass for suburban sites, but a marginally 

significant effect of period at urban sites (F = 3.90, df = 2, 8, P = 0.07). There was a 

B 

A 
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strong between-subjects effect (averaging over periods) of urbanization level on 

consumption of white-tailed deer biomass (F = 20.21, df = 2, 8, P = 0.002). Marginally 

significant between subjects-effects of urbanization level were also found with coyote 

consumption of raccoon (F = 4.44, df = 1, 8, P = 0.07) and woodchuck (F = 3.55, df = 1, 

8, P = 0.096) (Figure 2.1). 

Small rodent, rabbit, and deer carrion density  

Small rodent density.  Mice (Peromyscus spp.) (n = 568, 77.6%) were the most 

commonly captured small rodent, followed by voles (Microtus spp.) (n = 154, 21%). I 

also captured 3 eastern chipmunk (Tamias striatus; 0.27%), 7 meadow jumping mice 

(Zapus hudsonius; 0.64%), 40 masked shrew (Sorex cinereus; 3.6%), and 44 short-tail 

shrew (Blarina brevicauda; 4.02%). Eighty percent of masked shrews and 36.4% of 

short-tail shrews were captured at a single suburban site located in an old agricultural 

field. I did not include the shrew species in our population estimates of small rodents 

because shrew remains were rarely found in coyote scats (n = 2)    

The model of small rodent density that best fit the pooled urbanization level data 

sets incorporated the hazard detection function and included time dependent capture 

probability (Table 2.3). Since the hazard rate (Hz) detection function best described the 

decline in detection probability with distance from the home-range centers for the pooled 

data set, it was used in the models of site-specific density estimates. The site-specific 

estimates of small rodent density that returned the best fit models included the equal 

catchability (M0 or null) (n = 3), time variation (Mt) (n = 5), and time variation, trap  

response (Mtb) model (n = 3). Interestingly, 100% of the models of capture probability at 

urban sites varied with time (Mt = 4) or included time variation (Mtb = 1), whereas, only 
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Figure 2.2A. Seasonal estimates (± SE) of the proportion of biomass of the seven most 

consumed prey by coyotes at suburban areas in the greater Detroit area of southeastern 

Michigan, August 2010 – April 2013. Within prey species, letters above column error 

bars that differ indicate significant seasonal differences (P < 0.05). *Hibernating during 

the coyote breeding-gestation period; consumed biomass either from old carrion or other 

misidentified squirrel spp. 

 

43% of models at suburban sites did so (Mt = 1, Mtb = 2, M0 = 4).  

Annually, small rodent density (per ha) was greater at urban (�̅� = 16.17 ± 0.69 

SE) than suburban sites (�̅� = 7.38 ± 5.89), but the difference was not significant. Small 

rodent density was affected by biological period (F = 3.50, df = 2, 20, P = 0.05), but not 

urbanization level, and no interaction was found between biological period and 

urbanization level (Figure 2.3). I recorded the least and greatest densities (per ha) of 

small rodents in urban areas during the breeding-gestation (�̅� = 5.37 ± 0.95) and dispersal  

(�̅� = 22.86 ± 1.8) periods, respectively. Differences in small rodent density between the 

breeding-gestation and dispersal periods were marginally significantly different (t = -2.1 

df  = 22, P < 0.07) (Figure 2.3).   

Eastern cottontail rabbit density.  Annually, rabbit density was greater in urban 
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Figure 2.2B. Seasonal estimates (± SE) of the proportion of biomass of the seven most 

consumed prey by coyotes at urban areas in the greater Detroit area of southeastern 

Michigan, August 2010 – April 2013. Within prey species, letters above column error 

bars that differ indicate significant seasonal differences (P < 0.05). *Hibernating during 

the coyote breeding-gestation period; consumed biomass either from old carrion or other 

misidentified squirrel spp. 

 

areas (�̅� = 1.10 ± 0.24) than suburban locations (�̅� = 0.61 ± 0.11), but the difference was 

not significant. Rabbit density was not affected by biological period or urbanization level, 

but a significant interaction was found between urbanization level and biological period  

(F = 3.53, df = 2, 18, P = 0.05) (Figure 2.4). I recorded the least and greatest rabbit 

densities in urban areas during the dispersal (�̅� = 0.31 ± 0.24) and breeding-gestation (�̅� = 

1.56 ± 0.53) periods, respectively. Rabbit density peaked during the dispersal period in 

suburban habitats when rabbit density was at its lowest in urban habitats, which likely 

explained the significant interaction between urbanization level and biological period 

detected with the repeated-measures ANOVA. 

White-tailed deer carcass density.  Adjusted counts of available deer carcasses 

from DVCs were not affected by season between suburban (n = 183) or urban (n = 177) 
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Figure 2.3. Seasonal estimates (±SE) of small rodent density (n/ha) derived from mark-

recapture trapping data collected at urban and suburban areas in the greater Detroit area 

of southeastern Michigan, August 2010 – April 2013 

 

locations. There was also no difference in the number of DVCs between urbanization 

levels. Mean occurrence of DVCs increased between periods, increasing 23% between  

the breeding-gestation and pup-rearing periods, and 100% between the pup-rearing and 

dispersal periods (Figure 2.5). 

Available prey biomass. Relative available biomass of white-tailed deer was 

affected by biological period (F = 13.473, df = 2, 82, P < 0.001). White-tailed deer 

available biomass was significantly different between the breeding-gestation and 

dispersal periods (t = -5.1, df = 21, P < 0.006) as well as between the pup-rearing and 

dispersal periods (t = -5.9, df = 10, P < 0.002) (Figure 2.6A). Relative available biomass 

of eastern cottontail rabbit was not affected by urbanization level or biological period, 

and no interaction was found between factors (Figure 2.6B). Relative available biomass 
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Figure 2.4. Seasonal estimates (±SE) of eastern cottontail rabbit (Sylvilagus floridanus) 

density (n/ha) derived from counts of fecal pellets collected at urban and suburban areas 

in the greater Detroit area of southeastern Michigan, August 2010 – April 2013. 

 

of small rodents was affected by season (F = 4.536, df = 2, 20, P < 0.02) and there was a 

marginally significant interaction between urbanization level and biological period (F = 

3.10 df = 2, 20, P < 0.07). Small rodent biomass was marginally significantly different 

between the breeding-gestation and dispersal periods (t = -3.2, df = 19, P < 0.08) (Figure 

2.6C). Between the breeding-gestation and pup-rearing periods in suburban locations, 

available biomass of white-tailed deer increased 62.5% (z = -3.68, df = 2, P < 0.001; 

Figure 2.6A) and rabbit biomass increased 77.3% (z = -4.17, df = 2, P < 0.001; Figure 

2.6B) 

. Coyote Prey Selection 

Log-likelihood chi-square test results indicated significant deviation from random 

(𝝌𝑴𝑳
𝟐  = 21.06, df = 2, P < 0.001) areas. Significant differences in seasonal selection ratios 

were also found among the three most consumed prey species at both urbanization levels 
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Figure 2.5. Seasonal number (±SE) of white-tailed deer–vehicle collisions (DVC) at 

urban and suburban areas in the greater Detroit area of southeastern Michigan, June 2012 

– October 2013. Numbers adjusted +50% to account for unreported DVCs. 

 

feeding by coyotes in both suburban (𝝌𝑴𝑳
𝟐  = 63.05, df = 2, P < 0.001) and urban (Table 

2.4). 

In suburban areas, selection ratios for rabbits decreased significantly (35.6% 

lower) between the breeding-gestation and pup-rearing periods (P < 0.01). Furthermore, 

selection ratios in suburban areas during the dispersal period were significantly lower for 

white-tailed deer (62.9% lower) and rabbits (51.3% lower) compared to the pup-rearing 

period (P < 0.05).  

In urban areas, selection ratios for white-tailed deer decreased significantly 

(106.5% lower) between the breeding-gestation and pup-rearing periods (P < 0.001). 

Selection ratios for rabbits increased 123.3% from the pup-rearing to dispersal periods (P 

< 0.001) while those for small rodents declined 91.9% during the same period (P < 

0.001) (Figure 2.7).  
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Table 2.3. Model results of spatially explicit capture-recapture (SECR) analyses of small 

rodent density from pooled suburban and urban sites in the greater Detroit area of 

southeastern Michigan, August 2010 – April 2013. 

Development 

class 
Model 

Detection 

function 
K AICc Δi wi 

 

Suburban Time factor Hazard rate 17 5812.51 0 0.999  

 
Constant Hazard rate 6 5841.70 29.19 0.000  

 
Learned response Hazard rate 7 5842.45 29.94 0.000  

Urban Time factor Hazard rate 17 6296.62 0 0.999  

 
Constant Hazard rate 6 6314.78 18.16 0.000  

 
Learned response Hazard rate 7 6316.19 19.56 0.000  

 

AICc = 𝒏 𝐱 𝐋𝐍 (
𝐑𝐒𝐒

𝒏
) +

𝟐𝒌(𝒌+𝟏)

𝒏−𝒌−𝟏
 

 

 

Trends in coyote prey selection of white-tailed deer, eastern cottontail rabbits, and 

small rodents (the three prey most consumed) differed between urbanization levels with 

much wider variation seen in urban areas (Figure 2.6). In suburban areas, coyote selection 

of the top three most consumed prey did not change with seasonal fluctuations in prey 

density or available biomass. Annually, prey selection in the suburbs was positive for 

white tailed deer (avg. �̂�𝒊 = 0.59, range = 0.56 – 0.60), random or slightly negative for 

rabbits (avg. �̂�𝒊 = 0.32, range = 0.30 – 0.34), and negative for small rodents (avg. �̂�𝒊 = 

0.10, range = 0.06 – 0.13) (Figure 2.6). 

In urban regions, coyote selection for white-tailed deer was positive when 

available deer carcass biomass was low, negative as deer carcass biomass decreased 

slightly, then shifted to random feeding and remained negative thereafter (Figure 2.6A). 

A similar but opposite trend in urban areas was found with selection of eastern cottontail 

rabbit, whereby selection was negative when rabbit density and biomass were high and 

strongly positive when rabbit density and available biomass dropped to very low levels 

(Figure 2.6B). Coyotes residing in urban locations selected randomly for small rodents 
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Figure 2.6. Seasonal prey selection and relative available biomass of (A) white-tailed 

deer carcasses, (B) eastern cottontail rabbit, and (C) small rodents consumed by coyotes 

at suburban and urban sites in the greater Detroit area of southeastern Michigan, August 

2010 – April 2013. Values of 𝜷 above the horizontal gray line denote positive prey 

selection, below the gray line negative prey selection, and on the line random feeding.

A 

B 

C 
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Figure 2.7. Seasonal selection ratios (±SE) of the 3 most consumed prey of coyotes at 

suburban and urban sites in the greater Detroit area of southeastern Michigan, August 

2010 – April 2013. For each prey species within development class, letters (A, B, C) 

above column error bars that differ indicate significant seasonal differences (P < 0.05). 

 

when availability of small rodents was low, and strongly negative when availability was 

high (Figure 2.6C). The simple effects of individual categorical factors, urbanization 

level, season, and prey type did not adequately describe the data indicating that 

interactions between factors had an effect on coyote prey selection (𝑮 
𝟐 = 77.53, df = 12, 

P < 0.001). Results of G-tests for factor independence indicated that urbanization level 

(𝑮 
𝟐 = 31.87, df = 2, P < 0.001) and season (𝑮 

𝟐 = 19.96, df = 2, P < 0.001) were not 

independent of prey-type. The small p-values corresponding to tests for model adequacy 

(i.e., H0: the model is correct) indicate that all models are somewhat poor (Table 2.5). 

Based on the lowest AIC, the prey selectivity model that best fit the data, given the set of 

candidate models, specified conditional independence of urbanization level and season 

given prey-type (Model: DP,SP; Table 2.5). Closer examination of urbanization level and 

season while holding prey-type constant indicated that coyotes residing in suburban areas 

had higher, equal, and lower predicted (model fitted) levels of seasonal prey selection of

B 

A 

A 

B 

C 

A 
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B B 
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deer carcasses, eastern cottontail rabbit, and small rodents, respectively, compared to 

coyotes in urban areas. Despite this pattern however, the null hypothesis that urbanization 

level and season are independent was not rejected (G
2
 = 16.71, df = 2, P = 0.763). 

Therefore, I conclude that urbanization level and season are not associated when prey-

type is held constant. Log-linear analysis of interactions between season and prey-type 

within urbanization level however, revealed a significant interaction in urban areas (G
2
 = 

28.08, df = 4, P < 0.001) indicating that prey switching was occurring. A marginal 

interaction between season and prey was also found in suburban areas (G
2
 = 8.03, df = 4, 

P = 0.091).  

DISCUSSION 

Coyote diet in a large metropolitan area 

Small rodents, eastern cottontail rabbit, and white-tailed deer were the primary 

prey of coyotes in the greater Detroit area of southeastern Michigan, a trend that agrees 

with other studies of coyotes in developed areas (Atkinson and Shackleton 1991, Quinn 

1997, Fedriani et al. 2001, Morey et al. 2007). My results also confirm previously 

Table 2.5. Log-linear analyses of expected prey selection by coyotes (Canis latrans) in 

the greater Detroit area of southeastern Michigan, August 2010 – April 2013.   

Model
a
 𝐺 

2 df P-value AICc Δi wi  

DP,SP 17.26 6 0.008 5.26 0.00 0.85  

DS,DP,SP 16.72 4 0.002 8.72 3.46 0.15  

DP,S 36.53 10 0.000 16.53 11.28 0.00  

DS,DP 36.11 8 0.000 20.11 14.86 0.00  

SP,D 50.31 8 0.000 34.31 29.06 0.00  

DS,SP 49.89 6 0.000 37.89 32.64 0.00  

D,S,P 69.59 12 0.000 45.59 40.33 0.00  

DS,P 69.17 10 0.000 49.17 43.91 0.00  
aD: urbanization level (urban/suburban); S: season (breeding-gestation, pup-rearing, dispersal); P: prey type (white-

tailed deer, eastern cottontail rabbit, small rodent). 
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reported low %WO of domestic dog in coyote diets, though estimates using domestic dog 

biomass were higher (Appendix A, B). I found very little evidence of fruit in coyote diets, 

which may reflect either lower detection of highly digestible fruits in scats or low 

availability of fruit in the environment. Additionally, frequency of occurrence of human-

associated foods in coyote diets in the greater Detroit area was lower than those found in 

other studies (MacCracken 1982, McClure et al. 1995, Fedriani et al. 2001) which may 

reflect a higher proportion of abandoned, naturalized urban areas in the region, which 

would presumably increase available prey populations. Such a pattern is highly 

speculative, however, without further quantification of these land cover changes in the 

greater Detroit area compared to other regions. 

Unlike most other studies of coyote diets in developed areas, raccoon and 

woodchuck often made up > 10% and white-tailed deer > 20% of coyote diets in my 

study area. These prey however are generally underestimated, because food items are 

often expressed as percentages (occurrence or frequency of occurrence), which has been 

found to considerably underestimate larger-sized prey (Klare et al. 2011). Although 

individual coyotes are capable of killing adult white-tailed deer unassisted (Gese and 

Grothe, 1995, Patterson 1994) as well as raccoon and woodchuck (Gehrt and Riley 2010), 

they can be formidable prey for a coyote. Consequently, though not verifiable through 

scat analysis, I speculate that the major source of biomass of adults of these species 

throughout the year is carcasses of road-killed individuals. Outside of developed areas, 

Gese and Grothe (1995), and Paquet (1992) found that coyotes obtain the majority of 

their food from scavenging carcasses of wolf-killed ungulates (also see, Ozoga and 

Harger 1966). Because coyotes in southeastern Michigan adapted to living in the 
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presence of wolves, those residing in urban areas today may have retained some 

beneficial behaviors of the past. 

Coyote scavenging from carcasses of road-killed deer is potentially a major 

source of food for coyotes in metropolitan areas. This may be uniquely relevant in 

Michigan, which consistently records some of the highest numbers of DVCs in the 

Midwest, approximately 70% of which occur in the southern part of the state (Deer 

Vehicle Crash Information Clearing House 2015, SEMCOG 2015). In suburban areas of 

the greater Detroit area, the proportion of white-tailed deer biomass found in coyote diets 

remained steady at around 45%, whereas it fluctuated seasonally from 10% to 26% in 

urban areas. Noticeably in urban areas, a significant decrease in the relative proportion of 

white-tailed deer biomass in coyote diets occurred during the pup-rearing period (May – 

August) coinciding with a significant increase in small rodent biomass and appearance of 

woodchuck in the diet (Figure 2.2B). Frequency-based methods of estimates of white-

tailed deer carrion in coyote diets ranging from 10% to 30% have been reported from 

other metropolitan areas in the Midwest (Bollin-Booth 2007, Morey 2007, Cepek 2004).  

Woodchuck biomass in coyote diets was greatest when woodchucks were most 

available (i.e., not hibernating) during the pup-rearing period (May 1 – Aug 31) in both 

suburban and urban areas. Samson and Crete (1995) also found woodchuck to be the 

most important food in the summer diet of coyotes in southeastern Quebec. Woodchuck 

(particularly nursing females) may be at greater risk to coyote predation and (in my study 

area) to motor vehicle mortality during early spring because they are actively feeding on 

vegetation, frequently along roadsides where they are often struck and killed by 

automobiles. Secondly, juvenile woodchucks may be more vulnerable to coyote predation 
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towards the mid-point of the pup-rearing period because they are actively dispersing 

(Kwiecinski 1998). Woodchuck as coyote prey was somewhat surprising, given that 

coyotes are primarily nocturnal in developed areas and woodchuck are most active 

diurnally. Woodchuck may be more abundant in metropolitan areas because soils 

disturbed by human development are suitable for burrow construction, an important 

characteristic of woodchuck habitat (Grizzell 1955), and promoting growth of succulent 

vegetation. Woodward (1990) found very high densities of woodchuck (3.85 – 5.36 per 

ha) along suburban expressway interchanges in Ontario, much greater than those reported 

by others outside developed areas in the Great Lakes region (0.01 – 1.01 per ha). 

Surprisingly, little evidence of fox squirrel (Sciurus niger), a common roadkill in the 

region, was found in coyote scats. Because the fur of Sciurids is often difficult to 

differentiate, lack of fox or other squirrel species fur identified in scats may be a result of 

misidentification.  

Consumption of raccoon biomass by coyotes was highest during the dispersal 

period (Sep 1 – Dec 31), when juvenile raccoons are vulnerable to coyote predation as 

well as fatal encounters with motorized vehicles because raccoons are gaining 

independence and dispersing during this time. Annually, the proportion of raccoon 

biomass in coyote diets was 9.2% (range = 6.9 – 12.0%) which was comparable to the 

frequency of occurrence reported by Morey et al. (2006) in Chicago, but lower than that 

reported by Cepek (2004) in northern Ohio. Because raccoons are a highly synanthropic 

species, the greater Detroit area like other urban environments (Prange et al. 2003) likely 

supports very high densities of raccoon.  
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From an energetic cost-benefit perspective there is little downside to scavenging 

the carcass of a road-killed animal. Because carcasses do not have to be pursued, 

captured, or killed, handling costs are practically non-existent, and scavenging requires 

no special hunting skills that less-experienced individuals may not have acquired. The 

spatial arrangement of roads, traffic volumes, types of roads, as well as land use, and 

animal densities in the greater Detroit area likely contribute to higher numbers of road-

killed wildlife compared to other developed areas.  

How do coyotes select their prey in a metropolitan area? 

Coyotes residing in suburban areas fed randomly on eastern cottontail rabbit 

throughout the year, despite seasonal changes in available rabbit biomass (Figure 6B). 

These findings do not support my hypothesis of coyotes selectively foraging on rabbits in 

less-developed areas. However, year-round in suburban areas, coyote selection for road-

killed white-tailed deer was positive (Figure 2.6A) and deer biomass made up the largest 

portion of coyote diets (Figure 2.2A, Table 2.4) regardless of the number of white-tailed 

deer carcasses or rabbit density. White-tailed deer appear to fulfill the predictions of 

optimal forging theory that a profitable prey item will be consumed regardless of its 

density. Assuming on average that a coyote needs to consume approximately 8.5% of its 

body mass per day (Mukherjee et al. 2004), the carcass of an adult white-tailed deer 

could provision a single 20.0 kg coyote for approximately 21 days.  

Interestingly, in urban areas coyotes selected white-tailed deer during the 

breeding-gestation period, despite available rabbit biomass being 69% greater. Patterson 

et al. (1998) found a similar feeding pattern outside developed areas of southwestern 

Nova Scotia where coyotes continued to feed on deer, even in the presence of high 
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snowshoe hare densities. In urban areas, coyote prey selection during the pup-rearing 

period shifted to being positive for small rodents, negative for white-tailed deer, and 

random for rabbits (Figure 6). This shift occurred following a 200% increase in available 

biomass of small rodents. During the pup-rearing period, coyotes consumed more 

biomass of small rodents, less white-tailed deer and raccoon biomass, and woodchuck 

began to appear in coyote diets (Figure 2.2B). The decrease in white-tailed deer biomass 

may have been the result of coyotes shifting from scavenging carcasses of white-tailed 

deer to preying on neonate deer and older fawns. During the dispersal period in urban 

areas, coyote selection shifted markedly to rabbits despite a dramatic 87% decrease in 

available rabbit biomass which incidentally coincided with increases in available biomass 

of both deer (110%) and small rodent (38%).  

The foraging patterns of coyotes in urban areas of greater Detroit do not fit neatly 

into an optimal foraging framework. Notably, coyote selection for road-killed white-

tailed deer, a presumably optimal food source, was negative during the pup-rearing and 

dispersal periods (Figure 2.6A). Consumption of deer biomass during the pup-rearing 

season was both lower than expected and considerably lower than consumption of both 

rabbit and small rodent biomass (Table 2.4), characteristics not associated with an 

optimal foraging strategy. Moreover, except for selection of small rodents during the pup-

rearing period, shifts in coyote prey selection did not follow increases or decreases in 

prey density as would be expected for an opportunistic predator. Quite the opposite, 

among the three most consumed prey items, prey selection was often positive when prey 

density was at its lowest and vice versa (Figure 2.6). That coyotes selected for rabbits 

when rabbit density was low may reflect greater vulnerability of rabbits to coyote 
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predation, because of overall more edge habitat in urban environments, and reduction in 

hiding cover, a result of plants losing their leaves during the dispersal period. Conversely, 

small rodents may be less vulnerable to coyote predation during the dispersal period 

precisely because of increased leaf cover on the ground.  

I found convincing evidence of prey selection and prey switching by coyotes in 

the greater Detroit area (Figure 2.6, 2.7). Coyotes in suburban areas specialized 

exclusively on carcasses of road-killed white-tailed deer throughout the year, and deer 

neonates and older fawns during the spring/early summer, and did not switch to 

alternative prey regardless of availability of deer carrion. Outside developed areas, 

coyotes can be important predators of deer neonates and fawns (Duquette et al. 2014, 

Vreeland et al. 2004, Ballard et al. 1999), but this has not been rigorously evaluated in 

urban landscapes (Gehrt and Riley 2010).   

 In urban locations, coyotes used a foraging strategy that incorporated both prey 

selection and switching, without a strong discernable pattern. Both suburban and urban 

dwelling coyotes did, however, take advantage of the plethora of available carcasses of 

road-killed wildlife. My findings do not support the coyote’s designation as a strict 

generalist predator, but suggest that its foraging strategy is very fluid in developed areas. 

The greater Detroit area, like all urban environments, is constantly changing, with new 

housing and commercial developments, road construction and repair, and constant 

automobile traffic. Urban environments are inherently disturbed environments, such that 

coyotes have to adapt their foraging patterns to the ever-changing spatial structure of the 

landscape and prey aggregation patterns (Fortin et al. 2015). The high plasticity in 
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foraging displayed by coyotes is likely a major reason they have succeeded in urban 

landscapes.  
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CHAPTER 3: MOVEMENT PATTERNS AND HABITAT USE O OF COYOTES 

IN THE GREATER DETROIT AREA OF SOUTHEASTERN MICHIGAN 

 

INTRODUCTION 

Understanding how wildlife responds to urbanization is a critical component of 

conserving and managing wildlife in developed areas and mitigating human-wildlife 

conflicts. For wildlife to succeed, adjustment to the loss of habitat and fragmentation that 

results from urbanization requires dramatic changes in behavior, habitat selection, and 

demographics (Adams et al. 2005). While a number of small mammalian carnivores (e.g., 

raccoon (Procyon lotor) Prang et al. 2004; red fox (Vulpes vulpes) Cavallini 1996; striped 

skunk (Mephitis mephitis) Rosatte et al. 1991) have thrived in urban environments, large 

predators considered incompatible with humans (e.g., wolves (Canis lupus)) typically 

have not (Cardillo et al. 2004, Woodroffe 2000).  Characteristics of many synanthropic 

(ecologically associated with humans; Andrzejewski et al. 1978) species that have 

succeeded in urban environments include a generalist diet, high reproductive potential, 

and tolerance for or lack of avoidance and even affinity for humans (Fuller et al. 2010). 

Coyotes (Canis latrans) are ideal candidates for studying wildlife response to 

urbanization because they have traits favorable to inhabiting urban ecosystems (flexibility 

in habitat use, high reproductive potential), yet they retain a strong dependence on natural 

or remnant habitat patches (Gill and Bonnett 1973, Tigas et al. 2002, Riley et al. 2003), 

tend to steer clear of developed areas (Quinn 1997, Gehrt et al. 2009), and largely avoid 

humans. 

Key for wildlife to survive in the urban landscape is the capacity to negotiate the 

urban matrix and exploit important resources in both natural and highly human-modified 
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habitats (Gehring and Swihart 2003). A major reason coyotes have persisted in developed 

areas is that they restrict their activities to crepuscular and nocturnal periods, specifically 

to avoid humans where human activity is heavy (Andelt 1980, Quinn 1997, Gehrt and 

Riley 2010). Under the cover of darkness, coyotes freely traverse established home 

ranges, which often encompass residential and commercial areas, in search of food while 

simultaneously patrolling territorial boundaries. Developed landscapes consist of a 

patchwork of human land use dissected by linear landscape features (e.g., dirt roads, 

utility rights-of way, highway and roadway medians, linear parks, golf courses, hike-bike 

trails, and active and abandoned railroad tracks) interspersed with isolated remnants of 

natural habitat. The resulting landscape is dominated by narrow transition zones between 

different types of land cover (ecotones or edge habitat). Edge habitats often support 

communities of animal species that are primary prey of coyotes, and linear features 

provide coyotes with habitat and travel corridors between natural habitat patches 

(Atwood et al. 2004, Tigas et al. 2002). Despite the many documented detrimental effects 

of fragmentation in urban landscapes, coyotes are probably more capable of exploiting 

small isolated habitat fragments than other large carnivores (Gehrt and Riley 2010), 

although there is a threshold below which coyotes will disappear as habitat patches 

become increasingly smaller and more isolated (Crooks 2002). Track station data 

indicated that the probability of coyote occurrence was at least 50% in habitat fragments 

>1 ha in size and an isolation distance of 883 m (Crooks 2002). 

Resident coyotes form family groups or packs that establish, maintain, and 

generally remain within well-defined home ranges across the landscape, with little or no 

overlap between adjacent home ranges of other packs (Gese et al. 1988; but see Atwood 
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and Weeks 2003). Home range size, especially in carnivores, can be an important 

indicator of habitat quality and availability of resources (Gittleman and Harvey 1982). 

Many small urban dwelling carnivores, such as red fox (Cavallini 1996, Goszeyzynski 

2002, Newman et al. 2003), raccoon (Prang et al. 2004), and badger (Meles meles; 

Davison et al. 2009) have smaller home ranges in urban areas, suggesting that, at least for 

these predators, urban areas provide high quality patches of discrete resources.  

There appears to be a trend for home ranges of coyotes in urban areas to be 

smaller (Atkinson and Shackleton 1991, Person and Hirth 1991, Riley et al. 2003, 

Atwood et al. 2004, Gehrt et al. 2009) compared to those outside developed areas 

(Gosselink et al. 2003, Bekoff and Gese 2003), although there is considerable variation in 

home range size across the coyotes’ geographic range. Estimates of the mean home range 

size of resident coyotes from studies in non-urban (Bekoff and Gese 2003) and urban 

(Gehrt and Riley 2010) landscapes, respectively were 17.5 km
2
 (range 3 – 42 km

2
) and 

8.2 km
2
 (range 5 – 13 km

2
) (estimates based on n ≥ 10 individual home ranges). Coyote 

home ranges may be smaller in highly fragmented disturbed urban landscapes because 

food and cover resources are more abundant (Timm et al. 2004, Baker and Timm 1998, 

Quinn 1997, Oehler and Livaitis 1996, Mills and Knowlton 1991, Howell 1982). At the 

landscape level, small home ranges may also be an indicator of high population density 

(Andelt 1985, Fedriani et al. 2001) as has been reported for raccoons (Riley et al. 1998) 

and red foxes (Harris 1981) in urban areas. Thus home range size is correlated in some 

manner to the degree of urbanization, but the reasons for this are not well understood. 

Theoretical studies suggest that as resources become clumped across the landscape – as 

might occur in developed areas – animals must operate at larger spatial scales.  
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Researchers have found both positive (Gehrt 2007, Riley et al. 2003, Way et al.  

2001) and negative (Atwood et al. 2004) relationships between coyote home range size 

and proportion of non-natural or developed land within the home range. The size of a 

coyote’s home range may be constrained not only by the size, number, and distribution of 

natural habitat patches within the home range, but also by the connectivity linking these 

patches. 

Coyote territories, which generally include the entire home range, are used 

exclusively and defended by pack members through direct confrontation and indirectly 

via scent marking and howling (Voigt and Berg 1999, Bekoff and Wells 1980). Resident 

coyotes have strong fidelity to territories and have been known to maintain them over 

multiple generations (Kitchen et al. 2000b). Because important habitat resources (e.g., 

den sites, wooded cover) and prey species are often aggregated across the home range, 

certain “core areas” within the home range are used with greater intensity than others 

(Powell et al. 1997). Although many core areas can be ephemeral in space and time, 

certain core areas are often used traditionally by coyotes (e.g., den sites).  

Destruction of habitat and transformation of the spatial structure of landscapes 

caused by urbanization tends to aggregate and isolate resources onto islands or belts of 

habitat (Fortin et al. 2015). Loss and degradation of territories may dislocate coyotes and 

dramatically disrupt their space use and movement patterns. Individual coyotes may 

adjust to changes in resource distribution by expanding the area over which they traverse, 

while others may focus on smaller areas.  

Studies in urban landscapes have found considerable variation in the movement 

and space-use patterns of coyotes, and additional research is needed to provide a clearer 
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picture of how coyotes utilize and travel through cities. Most studies have focused on the 

association between coyote home range size and proportion of urban vs. natural land 

cover within the home range. Fewer studies, however, have examined the relationship 

between specific landscape metrics (e.g., habitat fragmentation) and coyote movement 

patterns in developed areas. To better understand these relationships, I explored the 

following questions: 

1) How does urbanization (measured as the proportion of urban land cover) 

within the home range affect the size of coyote home ranges and core areas in 

a large metropolitan area?  

2) How does fragmentation and connectivity of land cover within the home 

range affect the size of coyote home ranges and core areas in a large 

metropolitan area? 

Due to the extensive corridor habitat that connects patches of natural habitat in 

my study area, I hypothesize that the proportion of urban land cover within the home 

range will have little effect on the size of coyote home ranges or core areas. Further, I 

hypothesize that the size of coyote home ranges and core areas will be positively related 

to with fragmentation and inversely related to connectivity of natural land cover within 

the home range. 

STUDY AREA 

 

The greater Detroit area of southeastern Michigan encompasses portions of 

Livingston, Macomb, Oakland, Washtenaw, and Wayne counties, an area of 

approximately 8,600 km
2
, with a human population of approximately 4.5 million 

(SEMCOG 2010).  In its urban core (the area where anthropogenic development and 
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activity is greatest, impervious surfaces predominate, and green space is lacking (Gehrt 

2010)). Land use in the urban core is primarily residential, commercial, industrial, and 

transportation oriented, with parks, recreation areas, and other green space representing 

only a small proportion of the landscape.  In the suburbs, land use is predominately 

residential and agricultural. 

Within the urban core existing areas of natural and naturalized vegetation are 

extremely fragmented; most are highly altered river floodplains dominated by grassy 

areas and eastern cottonwood (Populus deltoides), or abandoned lots and old farmland 

dominated by non-native grasses and forbs.  Forest remnants are more common in 

suburban areas, and are often second-growth woodlots dominated by oak (Quercus spp.), 

elm (Ulmus spp.), or other tree species that have become established with the reversion of 

former agricultural lands to more natural conditions.   

METHODS 

Trapping and radio-tagging 

 Coyotes were live-trapped with KB Compound 5.5, 4-coiled spring, leg-hold traps 

with slightly offset jaws (hereafter KB 5.5) and non-powered cable restraints (e.g., 

Powell and Proulx 2003). These trapping devices are considered safe and effective when 

properly used and set correctly (Association of Fish & Wildlife Agencies 2006, Shivak et 

al. 2005). To minimize the capture of non-target species and juvenile coyotes, as 

recommended by Phillips and Gruver (1996), we set the pan tension of the KB 5.5 to 1.4 

– 1.8 kg (3 – 4 lbs.) using a force gauge (Sullivan’s Trap Tester). Cable restraints were 

secured in the ground with cable anchor stakes (Pogostick; Minnesota Trapline Products).  

Traps and cable restraints were typically set in the afternoon and checked the following 
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day at dawn, early-afternoon, and at dusk to minimize the amount of time a coyote could 

potentially be restrained (8 – 9 hours maximum). To reduce the possibility of inadvertent 

capture of diurnally active non-target species, such as domestic dogs, traps were placed in 

areas not frequented by humans. Additionally, the immediate area surrounding trap 

locations were posted with signs that included a warning of the presence of traps, a short 

description of the research project, and project personnel contact information. My 

trapping and handling protocols were approved by Wayne State University’s Institutional 

Animal Use and Care Committee (IACUC A01-07-11).  

 Trapping occurred in late June after den sites were abandoned and pups are fairly 

independent of adults (8 – 10 weeks old) and are often left at rendezvous sites while 

adults make nightly foraging trips. I pre-baited trap sites with carcasses of road-killed 

mammals, primarily white-tailed deer (MDNRE Scientific Collector’s Salvage Permit 

No. 1384) 7 to 10 days before setting and arming traps. Cable restraints were placed 

along trails and foot-hold traps near baited areas with recent evidence of coyote activity. I 

trapped throughout the winter and into spring several weeks before the birthing/pup-

rearing season in mid-April. 

 Captured coyotes were initially restrained with a handheld net (0.96-m x 0.84-m x 

1.2-m deep) or catch pole, then physically restrained and quickly administered a single 

injection of xylazine HCL (2.0 mg/kg body weight), a neuroleptic (tranquilizer) in the 

quadriceps muscle using a handheld syringe. Large-gauge (16 – 18) needles secured to 

syringes with Leur-Lok fittings were used for quick and stable drug delivery (Pond and 

O’Gara 1994). Tranquilized coyotes were placed in a left lateral recumbent position on a 

1.8-m x 2.4-m (6-ft x 8-ft) square canvas tarp, the head and neck were extended, and the 
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tongue drawn-out over the incisors to ensure an open airway. I applied a bland eye 

ointment to prevent eye drying and loosely placed a blindfold over the eyes to reduce 

stress, and auditory stimulation (talking) was kept to a minimum. Heart rate (70 – 120 

beats/min), respiratory rate (10 – 30 breathes/min), rectal temperature (37.8 – 39.2 °C), 

and capillary refill (~ < 1.0 sec) were closely monitored throughout the period of 

immobilization. I conducted a systematic head-to-tail physical examination of captured 

coyotes looking for any signs of injury, illness, or disease. Minor injuries (cuts and 

abrasions) were thoroughly rinsed with betadine solution and triple antibiotic ointment 

applied if deemed necessary. I attached uniquely numbered and colored (females - red, 

males – yellow) plastic ear tags (NASCO Farm & Ranch, Fort Atkinson, Wisconsin) to 

the pre-punched (6.25-mm diam.) ears of all adult coyotes. I recorded coyote gender, age 

(based on body size and tooth wear), weight and length (body and tail), and reproductive 

condition. Adults were outfitted with a very-high-frequency (VHF) radio-collar equipped 

with a 4-hour mortality sensor (model MB220B; Advanced Telemetry Systems, Insanti, 

Minnesota). Weight of radio-collars (160 g) was < 2% of the body weight of an average 

sized coyote (9 – 16 kg.), well below the 5 – 10% of body weight recommended by 

Gannon and Sikes (2011).  After processing, coyotes were placed in a large (91-cm L x 

64-cm W x 69-cm H) pet carrier and administered an IM injection of yohimbine (0.25 

mg/kg body weight) to reverse the clinical effects of xylazine.  Coyotes were then 

released. 

Ground-based radio telemetry techniques were used to closely monitor radio-

collared coyotes over the next 2 – 3 days for abnormalities in their typical active 

nocturnal and diurnal resting activity pattern. Thereafter, coyotes were tracked 1 – 3 
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times per week with UTM radio locations estimated via triangulation and the maximum 

likelihood estimator in the program LOCATE III (Nams 2006) loaded on a Personal 

digital assistant (PDA) (Garmin iQue™ 3600).  I gathered a minimum of six 

crepuscular/nocturnal and one diurnal radio location per coyote per week estimated with 

≥ 3 azimuths collected within 45 minutes of each other. I concentrated monitoring 

activities to crepuscular and nocturnal periods to correspond with coyote activity in urban 

areas (Morey 2004, Riley et al. 2003, Gibeau 1998, Atkinson and Shackleton 1991). 

Radio-locations with error polygons that exceeded 2500 m
2 

were not used in the analyses. 

I attempted to collect a minimum of 30 radio locations per coyote during the breeding-

gestation (Jan 1 – Apr 30), pup-rearing (May 1 – Aug 31), and dispersal (Sep 1 – Dec 31) 

seasons.  

Analysis of home range and core areas 

Coyote home range boundaries (the spatial domain) were initially defined by the 

95% isopleth of the fixed kernel density estimate (KDE; Worton 1989) with reference 

bandwidth as the smoothing parameter (Venables and Ripley 2002). Until recently, many 

researchers using kernel density estimates arbitrarily chose the 50% isopleth of the KDE 

to describe core areas (Laver and Kelly 2008). Wilson et al (2010) introduced a novel 

statistical method that determines the isopleth of the KDE that optimally partitions the 

home range into core areas and peripheral use regions for a given point pattern. I applied 

Wilson et al’s (2010) methodology to my radio-telemetry relocation data to delineate core 

areas recurrently used by coyotes. Following estimation of home range boundaries, radio-

telemetry relocation points within the spatial domain are tested for deviation from spatial 

homogeneity (i.e., clustering) using a modification of Ripley’s K function (L-hat; Ripley 
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1976).  If clustering is detected (i.e., relocations are not random), a Bayesian statistical 

model is applied iteratively to objectively partition the spatial pattern of radio-telemetry 

relocation points into ≥ 2 regions (the optimal isopleths representing core  areas)  of 

completely spatially random (CSR) point patterns. Modeling and analysis was conducted 

in R (R Core Team 2014; code provided by R. Wilson). 

To extract land cover attributes, I overlaid the boundaries of coyote home ranges 

and core areas on a raster data layer within a geographic information system (GIS). The 

raster data layer included the distribution of land cover types in southeastern Michigan 

(SE Michigan Land Cover 2002; Center for Geographic Information, Michigan 

Department of Information Technology, Lansing, MI) delineated along five broad land 

cover categories: urban, grassland, scrub-shrub, woodland, and wetland. I then used 

FRAGSTATS 4.2 (McGarigal et al. 2012) to quantify landscape metrics within coyote 

home range and core areas. I used PLAND (percentage of landscape) as a fundamental 

measure of landscape composition. Area-weighted mean patch fractal dimension 

(AWMPFD) was used as a measure of habitat fragmentation (Milne 1991). AWMPFD 

ranges between 1.0 and 2.0 with values approaching 1.0 indicative of very simple 

perimeters (e.g., circles or squares) and values approaching 2.0 a sign of highly 

convoluted, plane filling perimeters (McGarigal and Marks 1995). The connectance index 

(CONNECT), defined as the number of functional joinings between like land-use 

patches, was used to quantity habitat connectivity with a threshold distance for joinings 

of 1.52-km (the radius of a 7.3 km
2
 circle representing the grand mean of estimates of 

annual home range size of urban coyotes across seven studies reviewed by Gehrt 2007). 

The index ranges from 0 (no like patches connected) to 100 (all like patches connected) 



www.manaraa.com

70 

 

Finally, the largest patch index (0 < LPI < 100) was used as a measure of the dominant 

land cover category within coyote home ranges and territories.  

RESULTS 

I captured eight coyotes (five adult males, two adult females, one male pup) and 

outfitted six adults (four males, two females) with radio-collars during July 2011 – April 

2012 (Table 3.1). Four individuals were captured in foot-hold traps and four in non-

powered cable restraints. My sample of radio-collared coyotes was small and precludes 

any quantitative statistical analyses, but I chose to continue the study with the idea that 

the data still provide qualitative insights into coyote movement patterns. Furthermore, 

because individual coyotes perceive and use landscapes differently and space-use patterns  

I recorded 438 relocations (range = 1 – 263 locations per coyote) for all radio-collared 

coyotes during August 2011 – October 2012 (Table 3.2). I was only able to gather 

enough radio-telemetry location data to adequately estimate the home range boundaries 

of two adult male coyotes (CL02 and CL06) to conduct analyses of core areas and land 

cover. These two individuals were likely resident coyotes based on several observations 

near and during the breeding season of the individuals travelling with other un-collared 

coyote. Mean number of seasonal locations for these two individuals was 43.17 (+ 23.5 

SE). Mean size of error polygons from triangulations were 630.98 m
2
 (+ 660.86) and 

590.34 (+ 598.1) m
2
 respectively for coyote CL02 and CL06.  

Shortly after coyote CL02 was radio-tagged he moved 27.24 km (straight-line) 

northwest over a period of 75 days and established a 34.1 km
2
 home range which he 

maintained for 177 consecutive days (27 November 2011 – 22 May 2012). Thereafter I  
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Table 3.1.  Coyotes (Canis latrans) captured in the greater Detroit area of southeastern 

Michigan, July 2011 – March 2012. 

Id 

 

Frequency 

Capture 

date 

Capture 

Location Age Sex 

Weight 

(kg) 

Ear tag no. 

left/right
a
 

CL01 N/A 16-Jul-11 Bloomfield Hills Pup M 3.1 N/A 

CL02 163.720 6-Aug-11 Rochester Hills Adult M 12.9 1Y/ 

CL03 N/A 27-Sep-11 Dearborn Adult M 12.8 3Y/ 

CL04 163.744 20-Feb-12 Rochester Hills Adult M 11.2 4Y/4Y 

CL05  163.856 20-Feb-12 River Rouge Adult F 12.0 1R/1R 

CL06  163.543 20-Mar-12 Waterford Adult M 17.7 5Y/5Y 

CL07  163.556 23-Mar-12 Dearborn Adult M 14.4 6Y/6Y 

CL08  163.843 24-Mar-12 Dearborn Adult F 10.3 2R/2R 

a 
Y – yellow (males), R – red (females). 

 

was unable to locate CL02 until 26 Jul 2012 when he was found approximately 3.0 km 

southeast from his previous location. He then established a new home range (size = 11.37 

km
2
) which he maintained for 314 days until he was struck and killed by a motor vehicle 

on 6 June 2013. This was likely to be a permanent home range change rather than a shift 

or expansion in home range boundary because coyote CL02 was never relocated within 

his prior home range or core areas. Furthermore, during the necropsy of CL02, his 

stomach contained large pieces of undigested deer flesh and fur totaling 2.1 kg, a strong 

indication that he was provisioning pups. Coyote CL06 was captured within his home 

range, estimated at 10.49 km
2
. Interestingly, at their nearest edge, the home range 

boundaries of these two coyotes were within 4.0 km of one another and despite the short 

distance I never detected any incursions into the adjacent home range by either coyote. 

Coyote CL02 and CL06 exhibited clustering in the spatial point pattern of their respective 

radio-telemetry point relocation data (Figure 3.1). The southern home range of coyote 

CL02 (Figure 3.2) and the home range of CL06 (Figure 3.3) were adequately modeled by 

partitioning into two CSR regions, whereas the northern home range of CL02 required 
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Figure 3.1. Home range boundaries defined by the 95% fixed-kernel density isopleth and 

radio-telemetry relocation data (left column) of coyote CL02 (A – northern) and (B – 

southern) and coyote CL06 (C) in the greater Detroit area of southeastern Michigan, 

August 2011 – March 2014. L-hat functions describing corresponding radio-telemetry 

relocation point patterns (right column) indicate significant departure from complete 

spatial randomness (CSR) as indicated by the observed L-hat rising above the envelope 

created by the 2 broken lines. 

Home range boundary                         Distance (m) 

C 

A 

Home range boundary                         Distance (m) 

B 

Home range boundary                          Distance (m) 
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Figure 3.2. Northern (N) and southern (S) home range boundaries derived from the 95% 

isopleth of the fixed kernel density estimate and optimally partitioned isopleths of 

territorial boundaries of coyote CL02 in the greater Detroit area of southeastern 

Michigan, August 2011 – June 2013. 

 

three CSR regions (Figure 3.2). The optimal isopleth for delineating the core areas of 

CL06, was 23.1% which resulted in areas of 0.49 and 0.29 km
2 

(Figure3. 3). The southern 

core area of coyote CL02 was described by an optimal isopleth of 55.5% (49.3-56.3%) 

corresponding to an area of 3.41 km
2 

(Figure 3.2). The optimal isopleth for describing the

1 

N 

S 
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Figure 3.3. Home range boundaries derived from the 95% isopleth of the fixed kernel 

density estimate and optimally partitioned isopleths of territorial boundaries of coyote 

CL06 in the greater Detroit area of southeastern Michigan, August 2011 – March 2014. 

 

northern  inner core area of CL02, was 34.0% (30.6 – 37.3%) resulting in areas equaling 

3.47, 0.66, and 0.42 km
2 

(Figure 3.2). Although natural land cover (i.e., grassland, scrub-

shrub, wetland, and woodland) was proportionally the most prevalent category at the 

home range and core area level, urban land cover was the predominant type at both 
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spatial scales (Table3.3, 3.4). Furthermore, at both the home range and core area, natural 

land cover was less fragmented and more connected than urban land cover (Tables 3.3, 3. 

4; Appendix C).  

Compared to home ranges, core  areas consisted of 13.2% more natural and 

15.1% less urban land cover, were less fragmented (AWMPFD: natural 4.0% less, urban 

9.3% less), had greater overall connectivity (CONNECT: natural 45.2% greater, urban 

36.0% greater), and although urban land cover was still the dominant type, it was 53.8% 

less so. On an individual basis I found variation in the degree of fragmentation and 

connectivity in home ranges and core areas.  Urban, both in terms of proportion and 

dominance, was the most prominent land cover within the southern home range and core 

areas of coyote CL02 (Figure 3.2, Table 3.3, 3.4) and the home range of coyote CL06 

(Figure 3.3, Table 3.3). Within the core area of coyote CL06, grassland replaced urban as 

the dominant type of land cover (Figure 3.3, Table 3.4). Proportionally, natural land 

cover was the most common within the northern home range and territories of coyote 

CL02 with wetlands being the dominant type (Figure 3.1, Appendix C).  

The long-distance movements made by the four adult (two male, two female) 

radio-collared individuals for whom I had insufficient location data to conduct home 

range analyses suggest that they were either transient individuals or dispersers. The sum 

of the straight-line distances travelled between successive relocations by these individuals 

from when they were radio-tagged until I lost contact ranged from 6.2 to 42 km (  = 

22.37). 
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DISCUSSION 

It remains unclear whether resources are more available and of higher quality in 

smaller home ranges or larger ones, particularly if there is wide variation in the size of 

the home range, which is certainly true for coyotes in urban environments. Occupying a 

smaller home range suggests that resources occur in discrete, narrowly dispersed patches, 

whereas occupying a large home range indicates that resources are more widely 

dispersed. There is a prevailing trend for coyotes inhabiting urban landscapes to occupy 

smaller home ranges (Gehrt and Riley 2010), but habitat fragmentation resulting from 

urbanization may force coyotes to increase the area over which they search for resources. 

Access to important resources may be the primary driver of coyote home range size in 

urban landscapes. Because coyotes perceive habitat at large spatial scales they can assess 

the distribution of resources across the landscape (Atwood et al. 2004). Further,because 

of their high gap-crossing ability coyotes are capable of exploiting the small isolated 

resource patches often present in urban landscapes.  

Like other studies of urban dwelling coyotes, I found variation in the size of 

coyote home ranges. The smallest home range that I estimated was 53% larger than that 

reported by Gehrt et al. (2009) in Chicago, Illinois, and the largest was similar to 

thatreported by Way et al. (2002) in Cape Cod, Massachusetts. Home range size appeared 

to be inversely associated with urbanization, but the relationship was weak. The size of 

core areas, in contrast, appeared to be unrelated to urbanization, but there was a trend for 

smaller core areas to be associated with proportionally larger patches of natural land 

cover (Table 3.4). Close examination of the point pattern of radio-telemetry data revealed 

clusters of points in natural land cover and few scattered points in urban land cover 
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(Figure 3.2, 3.3). These results do not support my first hypothesis of no relationship 

between level of urbanization and size of coyote home ranges or core areas. Atwood et al. 

(2004) also found that coyote home range size was inversely correlated with urbanization 

and that core areas (50% KDE isopleths) contained proportionately more forested and 

corridor habitat than other available types. My results contrast with those reported by 

Gehrt et al. (2009) and Riley et al. (2003), however, who found a positive correlation 

between coyote home range size and proportion of urban land cover within the home 

range. Despite these disparate results, which potentially point to the coyotes’ behavioral 

plasticity in navigating the urban matrix, coyotes consistently avoid urban areas 

regardless of the make-up of land cover within the home range (Gehrt and Riley 2010). 

Further investigation of behavioral plasticity in coyote movement should be a point of 

emphasis in future research. 

Fragmentation, as measured by AWMPFD was low across all land cover 

categories and appeared to have little impact on the size of coyote home ranges or core 

areas. Fragmentation would likely have to be much greater before it negatively affected 

movement patterns of coyotes. Habitat fragmentation in urban landscapes can actually 

benefit coyotes by promoting the availability of communities of edge-adapted species 

that often serve as coyote prey (Patterson and Brown 1991). Although roads are a major 

source of fragmentation in urban environments, most roads, including freeways that 

receive high volumes of traffic, are not barriers to coyote movement (but see Riley et al. 

2006). I often obtained separate locations of radio-collared coyotes on opposite sides of 

secondary roads within several minutes of each other. Roads can benefit coyotes by 

providing a nearly endless supply of carcasses of road-killed animals in a metropolitan 
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area. This may be uniquely relevant in southeastern Michigan where roughly 10% of the 

estimated 70,000 statewide deer-vehicle collisions occur (Deer Vehicle Crash 

Information Clearing House 2015, SEMCOG 2015). 

Structurally, corridor habitats by definition increase fragmentation, but 

functionally can be very important for coyotes in urban environments. Vegetated 

corridors (utility rights-of-ways, e.g.) may provide coyotes with temporary or permanent 

habitat as well as connect and facilitate movement between natural habitat patches. 

Attwood et al. (2004) found disproportional use of corridor habitats (fence rows and 

ditches) by coyotes in west-central Indiana. Although my small sample size of radio-

collared coyotes did not permit quantitative analysis of coyote habitat selection, I often 

found coyotes using corridor habitats. On numerous occasions radio-collared coyotes 

would move rapidly between isolated patches of natural habitat using corridors that 

bridged or by-passed the urban matrix. Coyotes will also use secondary roads, 

particularly in high-density residential areas, to move between nocturnal foraging areas 

(Grubbs and Krasuman 2009, Way et al. 2004). 

Consistent with my second hypothesis, coyote home range and core areas 

increased in size as connectivity decreased (Table 3.3, 3.4). This result is curious because 

connectivity is inversely related to fragmentation. I would have expected to find a 

positive relationship between fragmentation and the size of coyote home ranges. The 

reason for this discrepancy is that AWMPFD weights patches based on size while 

CONNECT treats patch size equally and simply uses the number of functional joinings 

between like land-use patches. A more appropriate analog to AWMPFD would be the 

proximity index (PROX) which considers the size and proximity of all patches whose 
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edges are within a specified radius of the focal patch (McGarigal et al. 2012). I speculate 

that lack of connectivity at the home range level is less important than at the landscape 

scale, where it is critical for both transient and dispersing coyotes. 

This study is unique in its opportunity to document a permanent home range shift 

by an individual coyote as it was occurring. Reasons for this shift are unclear; it is 

possible that the individual was usurped from his position of dominance in his family 

group, or perhaps his mate died. Notably, this coyote moved from a home range in which 

the land cover was > 70% natural to one where > 60% of the land cover of the home 

range was urban (Figure 3.2). In stable environments where coyote populations are 

naturally regulated and not trapped or hunted by humans, researchers have documented 

constancy in the size and position on the landscape of home ranges and territories among 

coyote pairs and packs between years (Althoff and Gipson 1981, Bowen 1981, Bekoff 

and Wells, Andelt 1985) over multiple generations (Kitchen et al. 2000b) and for 

extended periods of time (Young et al. 2006). Shifts in boundaries and fluctuations in 

territory size have been documented in coyote populations that experienced die-offs 

associated with a disease outbreak (Camenzind 1978) or high levels of human 

exploitation (Mills and Knowlton 1991), respectively. Gese (1989) documented the 

temporary abandonment of a territory by an alpha female after the death of her mate and 

subsequent permanent loss of a portion of her territory to an adjacent pack, even after she 

returned with a new mate  

Urban areas may serve as de-facto refuges for coyotes because recreational 

hunting and trapping (except for removal purposes) are typically not lawful within 

municipal boundaries. Yet landscapes dominated by human development and activities 
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are very unstable, with natural land covers having habitat potential for wildlife developed 

over time into heavily human-dominated cover types. Shifts in the boundaries and 

fluctuations in the size of home range and territories of coyotes are often difficult to 

detect, but may occur more frequently in urban areas given the concomitant shifts in 

cover types that occur there. 

Urban landscapes are fundamentally disturbed environments, such that coyotes 

have to adapt their space use patterns to shifts in cover types, loss of habitat, and the 

ever-changing spatial structure of the landscape. Despite a small sample size, I 

documented coyotes to use a variety of strategies to navigate the urban landscape. 

Coyotes whose home ranges consisted of more urban land cover than natural were three 

times smaller than the largest home range which consisted of 75% more natural land 

cover than urban, suggesting that food and cover resources were less dispersed in smaller 

home ranges. Coyote core areas tended to be concentrated in natural land cover. 

Movements of the lone coyote, whose core area consisted of more urban land cover than 

natural, were concentrated in natural land cover. These size/land cover relationships, and 

individual movement patterns suggest coyote avoidance or at least tolerance of urban 

land cover. The greater Detroit area is unique in that the landscape consists of substantial 

corridor habitat that probably facilitates coyote occupancy of areas with relatively high 

human activity, although this is speculative without quantifying the amount of corridor 

habitat and tracking coyotes. 
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SIGNIFICANCE AND CONCLUSIONS 

Overview 

My project is the first to investigate the ecology of coyotes in the greater Detroit 

area, and one of only a handful of studies on urban wildlife being conducted in 

southeastern Michigan. This study is unique because it explores the ecology of a native 

wildlife species re-occupying an urban landscape undergoing de-urbanization (physical 

decline of human population) and naturalization of many abandoned areas. The primary 

goal of my research was to gather baseline data on coyote ecology in the greater Detroit 

area to: (1) better understand how urbanization affects the distribution and habitat use of 

coyotes, (2) quantify coyote diets and foraging patterns, and (3) examine how 

urbanization, and fragmentation and connectivity of natural land cover affects the size of 

coyote home ranges and core areas. Fundamental to understanding the behavior of 

coyotes living in close proximity to humans is knowledge of how coyotes distribute 

themselves and use habitat across the landscape. To understand the coyotes’ role as a top 

predator in urban environments requires knowledge of its diet, prey base, and mode of 

foraging. Finally, because of the coyotes’ reliance on natural habitat, it is important to 

identify how urbanization affects coyote space use patterns.  

Habitat use by coyotes in the greater Detroit area was similar to those residing in 

other human-developed areas. Coyotes preferred natural or naturalized habitats and 

tended to avoid developed areas. Areas surrounding locations of coyote evidence 

included greater than expected wooded and grassland land cover, but less urban. Fifty-

eight percent of coyote evidence was collected in woodland-grassland edge habitat, 

despite equal effort to collect evidence in urban habitat, a strong indication of importance 
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edge habitat as foraging areas for coyotes. Cover habitat, particularly areas with trees, 

appeared to be more important than just the presence of open space or undeveloped areas. 

Within both urban and suburban areas, buffers surrounding locations of coyote evidence 

included more wooded habitat and less urban land cover than expected. Importantly, 

treed cover provides den site and daytime resting cover for coyotes.  

Diets of coyotes inhabiting the greater Detroit area differed somewhat from those 

in other developed areas. Like the majority of other studies, white-tailed deer, eastern 

cottontail rabbit and small rodents were the three most consumed prey in both urban and 

suburban locations. Compared to other dietary studies, however, the proportion of 

biomass of white-tailed deer, raccoon, and woodchuck in coyote diets in my study was 

higher, particularly in suburban areas. I suggest that coyotes are scavenging more on 

road-killed animals in southeastern Michigan compared to other areas. This is speculative 

however because it is not possible to determine whether prey are killed or scavenged 

using scat analyses (Litvaitis (2000). Examination of the stomach contents of harvested 

and road-killed coyotes for the presence of fly larvae as an indication of scavenging may 

provide more information.        

Michigan consistently records some of the highest numbers of deer-vehicle 

collisions (DVC) in the Midwest and numbers of road-killed raccoons, and woodchuck, 

as well as other wildlife may also be greater than in other developed areas. In suburban 

areas, coyotes foraged selectively on white-tailed deer throughout the year, regardless of 

numbers of DVC. In urban areas, coyotes appeared to forage both selectively and 

opportunistically with frequent switching among the top three prey. Further investigation 
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of coyote use of road-kill as a major food source should be a point of emphasis in future 

research. 

The size of coyote home ranges as well as patterns relating home range size to 

proportion of urbanization within the home range varied; a result consistent with other 

studies in urban environments. Although my small sample size (n = 3) of home ranges 

precluded any rigorous statistical analyses my results were nevertheless interesting. There 

appeared to be an inverse relationship between home range size and proportion of urban 

land use within the home range, suggesting that coyotes reduce their use of space in 

urban areas. It is noteworthy, that I documented the permanent shift in the location of a 

radio-collared coyote’s home range. Although, dramatic shifts in coyote home ranges are 

not uncommon, few have been documented in urban areas. Extreme shifts in coyote 

space use appear to occur after some type of major disturbance (e.g., heavy human 

exploitation, loss of a mate, disease outbreak). Because dramatic changes in land cover 

occur regularly in developed areas, shifts such as what I documented, likely occur 

regularly but may go undetected because of the difficulty of tracking coyotes in 

developed areas.  

The reappearance of coyotes in the greater Detroit area and their appearance 

elsewhere in eastern North American metropolitan areas is an important conservation 

issue because coyotes are endemic to North America and their range expansion occurred 

naturally. Existence of coyotes near humans is a major challenge of wildlife management 

and an experiment in how modern society responds to the presence of a top carnivore. . . 

Although progress has been made in better understanding the coyotes’ relationship to 

urbanization there is still a great deal that we do not know. Future research in urban 
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landscapes should further explore the importance of corridor habitats as travel routes and 

valuable areas for foraging and cover for coyotes. Coyote removal experiments could 

provide a wealth of knowledge about the coyotes’ role as a top predator in urban 

environments and their potential to limit nuisance urban wildlife and how coyote space 

use patterns change in response to a shake-up in coyote social structure. Quantification of 

the density of carcasses of road-killed wildlife and use of physical biomarkers (e.g., 

metallic flakes, plastic bits or beads, Microtaggant® identification particles) sprinkled 

over carcasses and subsequently recovered in scat would provide data on the importance 

of road-kill as a major coyote food source. 
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Coyote distribution and habitat use, diet and foraging behavior, and space use 

patterns were investigated in the greater Detroit area of southeastern Michigan. We found 

evidence of coyotes on 24 of 30 (80%) suburban and 7 of 11 (64%) urban plots. Overall 

fifty-eight percent of coyote evidence was found within edge habitats, with den sites and 

tracks the only types of evidence found strictly in interior habitats.  Land cover around 

evidence points included more wooded land cover than expected in suburban areas, 

suggesting the importance of tree cover for coyote occupancy, and more open space and 

wooded land cover than expected in urban areas, highlighting their avoidance of heavily 

populated areas. Coyote diet was assessed through identification of remains of food items 

recovered in coyote scat. White-tailed deer, eastern cottontail rabbit, and small rodents 

were the most consumed prey in both urban and suburban areas. Coyote consumption of 

white-tailed deer biomass was 7.2% greater than expected in suburban areas and 10.0% 

less than expected in urban areas and the difference was significant (P < 0.004). More 

white-tailed deer, raccoon, and woodchuck biomass was consumed compared to other 
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studies, likely due to high use of road-kill. In suburban areas, coyote selection for road-

killed white-tailed deer was positive regardless of white-tailed deer or rabbit abundance. 

Coyotes in urban areas used a foraging strategy that incorporated both prey selection and 

switching, with no strong discernable pattern. Radio-telemetry technology was used to 

gather relocations of coyotes for analysis of home range and cores areas frequented by 

coyotes.  Smaller home ranges were made up of greater proportions of urban land than 

natural land cover, although there was variation. Core areas were dominated by relatively 

large patches of natural land cover and had greater connectivity compared to home range 

areas. Radio-telemetry data suggested that coyotes were selective in their use of space, 

avoiding urban land in favor of natural land cover.   

  



www.manaraa.com

114 

 

AUTOBIOGRAPHICAL STATEMENT 

William (Bill) Dodge earned a B.A. (1983) in computer Science from Wilkes 

College (now University), and B.S. (1998) and M.S. degrees (2002) in wildlife 

management from Michigan State University. His M.S. thesis examined the survival, 

reproduction, and movements of moose (Alces alces) in the western Upper Peninsula of 

Michigan. He worked as a Computer Specialist with U.S. Fish & Wildlife Service, a 

Mapping Specialist with the Michigan Department of Environmental Quality, a Deer 

Management Assessment Assistant for the Michigan Department of Natural Resources, 

and a White-tailed deer Research Assistant with the Department of Fisheries and Wildlife 

at Michigan State University, and an Interpretive Naturalist with The Huron-Clinton 

Metropolitan Authority. His research interests include the ecology of mammalian 

carnivores, and predator prey interactions in both natural and urban environments.   


	Wayne State University
	1-1-2016
	Ecology Of Coyotes (canis Latrans) In The Greater Detroit Area Of Southeastern Michigan
	William B. Dodge
	Recommended Citation


	Ecology of Urban Coyotes in Southeastern Michigan

